Buoyancy-driven motion of drops and bubbles in a periodically constricted capillary

M. Hemmat, A. Borhan

Research output: Contribution to journalArticle

28 Scopus citations

Abstract

Buoyancy-driven motion of viscous drops and air bubbles through a vertical capillary with periodic constrictions is studied. Experimental measurements of the average rise velocity of buoyant drops are reported for a range of drop sizes in a variety of two-phase systems. The instantaneous drop shapes at various axial positions within the capillary are also quantitatively characterized using digital image analysis. Periodic corrugations of the capillary wall are found to have a substantial retarding effect on the mobility of drops in comparison with previous experimental results in a straight cylindrical capillary. For systems characterized by small Bond numbers, drop deformations are found to be periodic. In large Bond number systems, however, drop breakup eventually occurs as the drop size is increased beyond a critical limit.

Original languageEnglish (US)
Pages (from-to)363-384
Number of pages22
JournalChemical Engineering Communications
Volume148-150
DOIs
StatePublished - Jan 1 1996

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Chemical Engineering(all)

Fingerprint Dive into the research topics of 'Buoyancy-driven motion of drops and bubbles in a periodically constricted capillary'. Together they form a unique fingerprint.

  • Cite this