TY - JOUR
T1 - Buoyancy-driven motion of drops and bubbles in a periodically constricted capillary
AU - Hemmat, M.
AU - Borhan, A.
PY - 1996/1/1
Y1 - 1996/1/1
N2 - Buoyancy-driven motion of viscous drops and air bubbles through a vertical capillary with periodic constrictions is studied. Experimental measurements of the average rise velocity of buoyant drops are reported for a range of drop sizes in a variety of two-phase systems. The instantaneous drop shapes at various axial positions within the capillary are also quantitatively characterized using digital image analysis. Periodic corrugations of the capillary wall are found to have a substantial retarding effect on the mobility of drops in comparison with previous experimental results in a straight cylindrical capillary. For systems characterized by small Bond numbers, drop deformations are found to be periodic. In large Bond number systems, however, drop breakup eventually occurs as the drop size is increased beyond a critical limit.
AB - Buoyancy-driven motion of viscous drops and air bubbles through a vertical capillary with periodic constrictions is studied. Experimental measurements of the average rise velocity of buoyant drops are reported for a range of drop sizes in a variety of two-phase systems. The instantaneous drop shapes at various axial positions within the capillary are also quantitatively characterized using digital image analysis. Periodic corrugations of the capillary wall are found to have a substantial retarding effect on the mobility of drops in comparison with previous experimental results in a straight cylindrical capillary. For systems characterized by small Bond numbers, drop deformations are found to be periodic. In large Bond number systems, however, drop breakup eventually occurs as the drop size is increased beyond a critical limit.
UR - http://www.scopus.com/inward/record.url?scp=0030484554&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030484554&partnerID=8YFLogxK
U2 - 10.1080/00986449608936525
DO - 10.1080/00986449608936525
M3 - Article
AN - SCOPUS:0030484554
VL - 148-150
SP - 363
EP - 384
JO - Chemical Engineering Communications
JF - Chemical Engineering Communications
SN - 0098-6445
ER -