But will it print? Assessing student use of design for additive manufacturing and exploring its effect on design performance and manufacturability

Rohan Prabhu, Scarlett R. Miller, Timothy W. Simpson, Nicholas A. Meisel

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Additive manufacturing (AM) enables engineers to improve the functionality and performance of their designs by adding complexity at little to no additional cost. However, AM processes also exhibit certain unique limitations, such as the presence of support material, which must be accounted for to ensure that designs can be manufactured feasibly and cost-effectively. Given these unique process characteristics, it is important for an AM-trained workforce to be able to incorporate both opportunistic and restrictive design for AM (DfAM) considerations into the design process. While AM/DfAM educational interventions have been discussed in the literature, limited research has investigated the effect of these interventions on students’ use of DfAM. Furthermore, limited research has explored how DfAM use affects the performance of students’ AM designs. This research explores this gap through an experimental study with 123 undergraduate students. Specifically, participants were exposed to either restrictive DfAM or dual DfAM (both opportunistic and restrictive) and then asked to participate in an AM design challenge. The students’ final designs were evaluated for (1) performance with respect the design objectives and constraints, and (2) the use of the various aspects of DfAM. The results showed that the use of certain DfAM considerations, such as minimum feature size and support material mass, successfully predicted the performance of the AM designs. Further, while the variations in DfAM education did not influence the performance of the AM designs, it did have an effect on the students’ use of certain DfAM concepts in their final designs. These results highlight the influence of DfAM education in bringing about an increase in students’ use of DfAM. Moreover, the results demonstrate the potential influence of DfAM in reducing build time and build material of the students’ AM designs, thus improving design performance and manufacturability.

Original languageEnglish (US)
Title of host publication45th Design Automation Conference
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791859186
DOIs
StatePublished - Jan 1 2019
EventASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2019 - Anaheim, United States
Duration: Aug 18 2019Aug 21 2019

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume2A-2019

Conference

ConferenceASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2019
CountryUnited States
CityAnaheim
Period8/18/198/21/19

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering
  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Modeling and Simulation

Cite this

Prabhu, R., Miller, S. R., Simpson, T. W., & Meisel, N. A. (2019). But will it print? Assessing student use of design for additive manufacturing and exploring its effect on design performance and manufacturability. In 45th Design Automation Conference (Proceedings of the ASME Design Engineering Technical Conference; Vol. 2A-2019). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/DETC2019-97478