Calcium isotopes in deep time: Potential and limitations

Nikolaus Gussone, Anne Sofie C. Ahm, Kimberly V. Lau, Harold J. Bradbury

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Calcium is an essential element in the biogeochemical cycles that regulate the long-term climate state of Earth. The removal of CO2 from the ocean-atmosphere system is controlled by the burial of carbonate sediments (CaCO3), ultimately linking the global calcium and carbon cycles. This fundamental link has driven the development of the stable calcium isotope proxy with application to both ancient skeletal and non-skeletal bulk carbonate sediments. Calcium isotope ratios (δ44/40Ca) have been used to track long-term changes in seawater chemistry (e.g., aragonite vs. calcite seas) and to elucidate short-term climatic perturbations associated with mass extinction events. However, developments in the calcium isotope proxy have shown that δ44/40Ca values in carbonate minerals also are sensitive to changes in precipitation rates, mineralogy and diagenesis, thereby complicating the application of the proxy to the reconstruction of global cycles. First, inorganic carbonate precipitation experiments have demonstrated that carbonate δ44/40Ca values are sensitive to precipitation rates with higher rates generally leading to larger fractionation. Second, δ44/40Ca values are sensitive to carbonate mineralogy with inorganic aragonite and calcite being on average ~ 1.5‰ and ~ 0.9‰ depleted relative to contemporaneous seawater, respectively. The effects of both changes in carbonate mineralogy and precipitation rates affect primary and secondary minerals, but are particularly pronounced during carbonate diagenesis where relatively slow rates of recrystallization and neomorphism can lead to significant changes in bulk sediment δ44/40Ca values. Third, changes in faunal composition expressed in skeletal fossil archives can lead to large changes in carbonate δ44/40Ca values that are decoupled from changes in global cycles. Nevertheless, when these factors are appropriately considered the application of calcium isotopes in ancient carbonate sediments becomes a powerful tool for understanding biogeochemical processes that operate over many scales; from diagenetic changes within the sediment pore-space, to regional changes across ancient carbonate platforms, and to global changes in seawater chemistry through time. Importantly, the processes that contribute to variability in carbonate δ44/40Ca values are likely to impact other carbonate-bound proxies, highlighting the potential for calcium isotopes as a tool to better understand the variability of other isotope systems.

Original languageEnglish (US)
Article number119601
JournalChemical Geology
Volume544
DOIs
StatePublished - Jun 30 2020

All Science Journal Classification (ASJC) codes

  • Geology
  • Geochemistry and Petrology

Fingerprint Dive into the research topics of 'Calcium isotopes in deep time: Potential and limitations'. Together they form a unique fingerprint.

Cite this