Calculation of 3-D temperature distribution in film-cooled flat plates using 2-D empirical correlations for film-cooling effectiveness and heat transfer augmentation

Peter T. Ingram, Savas Yavuzkurt

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

In existing gas turbine heat transfer literature there are several correlations developed for the spanwise-averaged film-cooling effectiveness and heat transfer augmentation for inline injection on flat plates. More accurate and detailed prediction of film-cooling performance, particularly 3-D metal temperatures are needed for design purposes. 2-D correlations where effectiveness and heat transfer augmentation are functions of streamwise and spanwise directions would help to satisfy this need. Based on this fact, the current study extends the spanwise-averaged correlations into 2-D correlations by using a Gaussian distribution in the transverse direction. The correlations are obtained using limited spanwise data and more available spanwise-averaged data and existing spanwise-averaged correlations for a single row of holes with inline injection. These correlations presented in this paper are functions of different flow parameters such as mass flow ratio M, density ratio DR, , transverse pitch P/D, and inline injection angle α, with ranges of M:0.2-2.5, DR: 1.2,1.5,1.8, P/D: 2, 3,5, α: 30, 60, 90 degrees. The developed correlations match existing spanwise-averaged correlations when averaged. These correlations are used to calculate solid flat plate temperatures for two well-documented cases of film-cooled flat plates. Spanwise variations in the metal temperature were calculated to be between 5-6K for a temperature difference of 40K and between 20-30K for a temperature difference of 250K, significant for design purposes. The study also contains the comparison of solid temperatures for conjugate and non-conjugate heat transfer cases using a Reduced Order Film Model (ROFM) which is implemented in a loosely coupled conjugate heat transfer technique called Iterative Conjugate Heat Transfer (ICHT)).The differences between conjugate and non conjugate simulations are about 6K or 2% of the local temperature for low temperature study and about 20K or 5% for high temperature study. The study showed that the difference between conjugate and non-conjugate solutions increases as the temperature levels increase. These differences are quite important and should be taken into account during design of turbine blades.

Original languageEnglish (US)
Title of host publicationASME Turbo Expo 2012
Subtitle of host publicationTurbine Technical Conference and Exposition, GT 2012
Pages1459-1471
Number of pages13
EditionPARTS A AND B
DOIs
StatePublished - Dec 1 2012
EventASME Turbo Expo 2012: Turbine Technical Conference and Exposition, GT 2012 - Copenhagen, Denmark
Duration: Jun 11 2012Jun 15 2012

Publication series

NameProceedings of the ASME Turbo Expo
NumberPARTS A AND B
Volume4

Other

OtherASME Turbo Expo 2012: Turbine Technical Conference and Exposition, GT 2012
CountryDenmark
CityCopenhagen
Period6/11/126/15/12

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Fingerprint Dive into the research topics of 'Calculation of 3-D temperature distribution in film-cooled flat plates using 2-D empirical correlations for film-cooling effectiveness and heat transfer augmentation'. Together they form a unique fingerprint.

Cite this