Calculation of hydraulic fracture induced stress and corresponding fault slippage in shale formation

Kui Liu, Arash Dahi Taleghani, Deli Gao

Research output: Contribution to journalArticle

Abstract

The casing deformation problems during hydraulic fracturing process in shale gas wells seriously affect multi-stage hydraulic fracturing treatment and cause significant impact on efficient exploitation of shale gas in Sichuan, China. But by now, the mechanism of these casing deformation problems has not been completely understood. The tests of the casing deformation show that the shear failure is the main type of casing deformation. Combined with the detected seismic data, the fault slip caused by hydraulic fracturing is identified as the main reason for casing deformation in shale gas wells. A deep understanding of fault reactivation and slip is significant important. Hence, a semi-analytical model for calculating induced stress along the fault caused by hydraulic fracture is established in this paper. Based on the induced stress along the fault, semi-analytical models for calculating two types of fault slip are established, including the reactivated zone located at one fault tip and the reactivated zone located away from fault tips. Additionally, the effects of fluid pressure, dip angle of fault, scale of fluid stimulated area and the friction coefficient on fault slippage are discussed. At last, the method for calculating fault slippage proposed in this paper is applied in field and the calculated result is consistent with the field data. The semi-analytical model proposed in this paper provides a reasonable way for identifying casing deformation in shale gas wells or other wells which need hydraulic fracturing treatments.

Original languageEnglish (US)
Article number115525
JournalFuel
Volume254
DOIs
StatePublished - Oct 15 2019

Fingerprint

Shale
Hydraulic fracturing
Hydraulics
Fault slips
Analytical models
Oil well casings
Fluids
Friction
Shale gas

All Science Journal Classification (ASJC) codes

  • Chemical Engineering(all)
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Organic Chemistry

Cite this

@article{438711fb50364f85959cbc8875ffc77e,
title = "Calculation of hydraulic fracture induced stress and corresponding fault slippage in shale formation",
abstract = "The casing deformation problems during hydraulic fracturing process in shale gas wells seriously affect multi-stage hydraulic fracturing treatment and cause significant impact on efficient exploitation of shale gas in Sichuan, China. But by now, the mechanism of these casing deformation problems has not been completely understood. The tests of the casing deformation show that the shear failure is the main type of casing deformation. Combined with the detected seismic data, the fault slip caused by hydraulic fracturing is identified as the main reason for casing deformation in shale gas wells. A deep understanding of fault reactivation and slip is significant important. Hence, a semi-analytical model for calculating induced stress along the fault caused by hydraulic fracture is established in this paper. Based on the induced stress along the fault, semi-analytical models for calculating two types of fault slip are established, including the reactivated zone located at one fault tip and the reactivated zone located away from fault tips. Additionally, the effects of fluid pressure, dip angle of fault, scale of fluid stimulated area and the friction coefficient on fault slippage are discussed. At last, the method for calculating fault slippage proposed in this paper is applied in field and the calculated result is consistent with the field data. The semi-analytical model proposed in this paper provides a reasonable way for identifying casing deformation in shale gas wells or other wells which need hydraulic fracturing treatments.",
author = "Kui Liu and {Dahi Taleghani}, Arash and Deli Gao",
year = "2019",
month = "10",
day = "15",
doi = "10.1016/j.fuel.2019.05.108",
language = "English (US)",
volume = "254",
journal = "Fuel",
issn = "0016-2361",
publisher = "Elsevier BV",

}

Calculation of hydraulic fracture induced stress and corresponding fault slippage in shale formation. / Liu, Kui; Dahi Taleghani, Arash; Gao, Deli.

In: Fuel, Vol. 254, 115525, 15.10.2019.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Calculation of hydraulic fracture induced stress and corresponding fault slippage in shale formation

AU - Liu, Kui

AU - Dahi Taleghani, Arash

AU - Gao, Deli

PY - 2019/10/15

Y1 - 2019/10/15

N2 - The casing deformation problems during hydraulic fracturing process in shale gas wells seriously affect multi-stage hydraulic fracturing treatment and cause significant impact on efficient exploitation of shale gas in Sichuan, China. But by now, the mechanism of these casing deformation problems has not been completely understood. The tests of the casing deformation show that the shear failure is the main type of casing deformation. Combined with the detected seismic data, the fault slip caused by hydraulic fracturing is identified as the main reason for casing deformation in shale gas wells. A deep understanding of fault reactivation and slip is significant important. Hence, a semi-analytical model for calculating induced stress along the fault caused by hydraulic fracture is established in this paper. Based on the induced stress along the fault, semi-analytical models for calculating two types of fault slip are established, including the reactivated zone located at one fault tip and the reactivated zone located away from fault tips. Additionally, the effects of fluid pressure, dip angle of fault, scale of fluid stimulated area and the friction coefficient on fault slippage are discussed. At last, the method for calculating fault slippage proposed in this paper is applied in field and the calculated result is consistent with the field data. The semi-analytical model proposed in this paper provides a reasonable way for identifying casing deformation in shale gas wells or other wells which need hydraulic fracturing treatments.

AB - The casing deformation problems during hydraulic fracturing process in shale gas wells seriously affect multi-stage hydraulic fracturing treatment and cause significant impact on efficient exploitation of shale gas in Sichuan, China. But by now, the mechanism of these casing deformation problems has not been completely understood. The tests of the casing deformation show that the shear failure is the main type of casing deformation. Combined with the detected seismic data, the fault slip caused by hydraulic fracturing is identified as the main reason for casing deformation in shale gas wells. A deep understanding of fault reactivation and slip is significant important. Hence, a semi-analytical model for calculating induced stress along the fault caused by hydraulic fracture is established in this paper. Based on the induced stress along the fault, semi-analytical models for calculating two types of fault slip are established, including the reactivated zone located at one fault tip and the reactivated zone located away from fault tips. Additionally, the effects of fluid pressure, dip angle of fault, scale of fluid stimulated area and the friction coefficient on fault slippage are discussed. At last, the method for calculating fault slippage proposed in this paper is applied in field and the calculated result is consistent with the field data. The semi-analytical model proposed in this paper provides a reasonable way for identifying casing deformation in shale gas wells or other wells which need hydraulic fracturing treatments.

UR - http://www.scopus.com/inward/record.url?scp=85067185352&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85067185352&partnerID=8YFLogxK

U2 - 10.1016/j.fuel.2019.05.108

DO - 10.1016/j.fuel.2019.05.108

M3 - Article

AN - SCOPUS:85067185352

VL - 254

JO - Fuel

JF - Fuel

SN - 0016-2361

M1 - 115525

ER -