TY - JOUR
T1 - "Candidates thermonerobacter thiotrophicus," a non-phototrophic member of the Bacteroidetes/Chlorobi with dissimilatory sulfur metabolism in hot spring mat communities
AU - Thiel, Vera
AU - Costas, Amaya M.Garcia
AU - Fortney, Nathaniel W.
AU - Martinez, Joval N.
AU - Tank, Marcus
AU - Roden, Eric E.
AU - Boyd, Eric S.
AU - Ward, David M.
AU - Hanada, Satoshi
AU - Bryant, Donald A.
N1 - Funding Information:
This study was partly funded by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the Department of Energy through Grant DE-FG02-94ER20137. DB and DW additionally acknowledge support from the NASA Exobiology program (NNX09AM87G and NNX16SJ62G). This work was also partly supported by the US Department of Energy (DOE), Office of Biological and Environmental Research (BER), as part of BER’s Genomic Science Program 395 (GSP). This contribution originates from the GSP Foundational Scientific Focus Area (FSFA) at the Pacific Northwest National Laboratory (PNNL) under a subcontract to DB. The nucleotide sequencing was performed as part of a Community Sequencing Program (Project CSP-411) and was performed by the US Department of Energy JGI, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. Work by ER, EB and NF was supported by the NASA Astrobiology Institute, grant NNA13AA94A. EB was supported by the National Science Foundation, grant #1820658. Research by VT, MT, and SH was supported by the Institute for Fermentation, Osaka, Japan. JM was funded by the Tokyo Human Resources Fund for City Diplomacy.
Funding Information:
This study was partly funded by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the Department of Energy through Grant DE-FG02-94ER20137. DB and DW additionally acknowledge support from the NASA Exobiology program (NNX09AM87G and NNX16SJ62G). This work was also partly supported by the US Department of Energy (DOE), Office of Biological and Environmental Research (BER), as part of BER's Genomic Science Program 395 (GSP). This contribution originates from the GSP Foundational Scientific Focus Area (FSFA) at the Pacific Northwest National Laboratory (PNNL) under a subcontract to DB. The nucleotide sequencing was performed as part of a Community Sequencing Program (Project CSP-411) and was performed by the US Department of Energy JGI, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. Work by ER, EB and NF was supported by the NASA Astrobiology Institute, grant NNA13AA94A. EB was supported by the National Science Foundation, grant #1820658. Research by VT, MT, and SH was supported by the Institute for Fermentation, Osaka, Japan. JM was funded by the Tokyo Human Resources Fund for City Diplomacy.
Publisher Copyright:
© 2019 Frontiers Media S.A. All Rights Reserved.
PY - 2019
Y1 - 2019
N2 - In this study we present evidence for a novel, thermophilic bacterium with dissimilatory sulfur metabolism, tentatively named "Candidatus Thermonerobacter thiotrophicus," which is affiliated with the Bacteroides/Ignavibacteria/Chlorobi and which we predict to be a sulfate reducer. Dissimilatory sulfate reduction (DSR) is an important and ancient metabolic process for energy conservation with global importance for geochemical sulfur and carbon cycling. Characterized sulfate-reducing microorganisms (SRM) are found in a limited number of bacterial and archaeal phyla. However, based on highly diverse environmental dsrAB sequences, a variety of uncultivated and unidentified SRM must exist. The recent development of high-throughput sequencing methods allows the phylogenetic identification of some of these uncultured SRM. In this study, we identified a novel putative SRM inhabiting hot spring microbial mats that is a member of the OPB56 clade ("Ca. Kapabacteria") within the Bacteroidetes/Chlorobi superphylum. Partial genomes for this new organism were retrieved from metagenomes from three different hot springs in Yellowstone National Park, United States, and Japan. Supporting the prediction of a sulfate-reducing metabolism for this organism during period of anoxia, diel metatranscriptomic analyses indicate highest relative transcript levels in situ for all DSR-related genes at night. The presence of terminal oxidases, which are transcribed during the day, further suggests that these organisms might also perform aerobic respiration. The relative phylogenetic proximity to the sulfur-oxidizing, chlorophototrophic Chlorobi further raises new questions about the evolution of dissimilatory sulfur metabolism.
AB - In this study we present evidence for a novel, thermophilic bacterium with dissimilatory sulfur metabolism, tentatively named "Candidatus Thermonerobacter thiotrophicus," which is affiliated with the Bacteroides/Ignavibacteria/Chlorobi and which we predict to be a sulfate reducer. Dissimilatory sulfate reduction (DSR) is an important and ancient metabolic process for energy conservation with global importance for geochemical sulfur and carbon cycling. Characterized sulfate-reducing microorganisms (SRM) are found in a limited number of bacterial and archaeal phyla. However, based on highly diverse environmental dsrAB sequences, a variety of uncultivated and unidentified SRM must exist. The recent development of high-throughput sequencing methods allows the phylogenetic identification of some of these uncultured SRM. In this study, we identified a novel putative SRM inhabiting hot spring microbial mats that is a member of the OPB56 clade ("Ca. Kapabacteria") within the Bacteroidetes/Chlorobi superphylum. Partial genomes for this new organism were retrieved from metagenomes from three different hot springs in Yellowstone National Park, United States, and Japan. Supporting the prediction of a sulfate-reducing metabolism for this organism during period of anoxia, diel metatranscriptomic analyses indicate highest relative transcript levels in situ for all DSR-related genes at night. The presence of terminal oxidases, which are transcribed during the day, further suggests that these organisms might also perform aerobic respiration. The relative phylogenetic proximity to the sulfur-oxidizing, chlorophototrophic Chlorobi further raises new questions about the evolution of dissimilatory sulfur metabolism.
UR - http://www.scopus.com/inward/record.url?scp=85063322572&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85063322572&partnerID=8YFLogxK
U2 - 10.3389/fmicb.2018.03159
DO - 10.3389/fmicb.2018.03159
M3 - Article
C2 - 30687241
AN - SCOPUS:85063322572
VL - 10
JO - Frontiers in Microbiology
JF - Frontiers in Microbiology
SN - 1664-302X
IS - JAN
M1 - 3159
ER -