Casing convective heat transfer coefficient and reference freestream temperature determination near an axial flow turbine rotor

C. Camci, B. Gumusel

Research output: Contribution to journalArticle

Abstract

The present study explains a steady-state method of measuring convective heat transfer coefficient on the casing of an axial flow turbine. The goal is to develop an accurate steady-state heat transfer method for the comparison of various casing surface and tip designs used for turbine performance improvements. The freestream reference temperature, especially in the tip gap region of the casing, varies monotonically from the rotor inlet to rotor exit due to work extraction in the stage. In a heat transfer problem of this nature, the definition of the freestream temperature is not as straightforward as constant freestream temperature type problems. The accurate determination of the convective heat transfer coefficient depends on the magnitude of the local freestream reference temperature varying in axial direction, from the rotor inlet to exit. The current study explains a strategy for the simultaneous determination of the steady-state heat transfer coefficient and freestream reference temperature on the smooth casing of a single stage rotating turbine facility. The heat transfer approach is also applicable to casing surfaces that have surface treatments for tip leakage control. The overall uncertainty of the method developed is between 5% and 8% of the convective heat transfer coefficient.

Original languageEnglish (US)
Pages (from-to)1-9
Number of pages9
JournalJournal of Heat Transfer
Volume133
Issue number8
DOIs
StatePublished - Aug 2011

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Casing convective heat transfer coefficient and reference freestream temperature determination near an axial flow turbine rotor'. Together they form a unique fingerprint.

  • Cite this