Ca2+ pools and cell growth: Arachidonic acid induces recovery of cells growth-arrested by Ca2+ pool depletion

Matthew N. Graber, Amparo Alfonso, Donald Gill

Research output: Contribution to journalArticle

41 Citations (Scopus)

Abstract

The intracellular Ca2+ pump blocker, thapsigargin, induces emptying of Ca2+ pools and entry of DDT1MF-2 smooth muscle cells into a quiescent G0-like growth state. Although thapsigargin blocks pumps essentially irreversibly, high serum (20%) induces appearance of new pump protein, return of functional pools, and reentry of cells into the cell cycle (Waldron, R. T., Short, A. D., Meadows, J. J., Ghosh, T. K., and Gill, D. L. (1994) J. Biol. Chem. 269, 11927-11933). Through analysis of the effects of defined serum components and growth supplements, we reveal here that the factors in serum responsible for inducing recovery of Ca2+ pools and growth in thapsigargin-arrested DDT1MF-2 cells are exactly mimicked by the three essential fatty acids, arachidonic, linoleic, and α-linolenic acids. The EC50 values for arachidonic and linoleic acids on growth induction of thapsigargin-arrested cells were the same, approximately 5 μM. Nonessential fatty acids, including myristic, palmitic, stearic, oleic, and arachidic acids, were without any effect. Although not proven to be the active component of serum, levels of arachidonic and linoleic acids in serum were sufficient to explain serum-induced growth recovery. Significantly, arachidonic or linoleic acids induced complete recovery of bradykinin-sensitive Ca2+ pools within 6 h of treatment of thapsigarginarrested cells. Protein synthesis inhibitors (cycloheximide or puromycin) completely blocked the appearance of serum-induced or arachidonic acid-induced agonistsensitive pools. The sensitivity and fatty acid specificity of Ca2+ pool recovery in thapsigargin-arrested cells were almost identical to that for growth recovery. No pool or growth recovery was observed with 5,8,11,14-eicosatetraynoic acid, the nonmetabolizable analogue of arachidonic acid, suggesting that conversion to eicosanoids underlies the pool and growth recovery induced by essential fatty acids. The results provide not only further information on the link between Ca2+ pools and cell growth but also evidence for a potentially important signaling pathway involved in inducing transition from a stationary to a proliferative growth state.

Original languageEnglish (US)
Pages (from-to)883-888
Number of pages6
JournalJournal of Biological Chemistry
Volume271
Issue number2
DOIs
StatePublished - Jan 12 1996

Fingerprint

Cell growth
Arachidonic Acid
Thapsigargin
Recovery
Growth
Linoleic Acids
Arachidonic Acids
Serum
Cells
Essential Fatty Acids
Pumps
Eicosanoic Acids
Fatty Acids
5,8,11,14-Eicosatetraynoic Acid
Linolenic Acids
Stearic Acids
Puromycin
Protein Synthesis Inhibitors
Eicosanoids
Reentry

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Cite this

@article{98a4ec0b3e904e3b9891b22e6ae7a564,
title = "Ca2+ pools and cell growth: Arachidonic acid induces recovery of cells growth-arrested by Ca2+ pool depletion",
abstract = "The intracellular Ca2+ pump blocker, thapsigargin, induces emptying of Ca2+ pools and entry of DDT1MF-2 smooth muscle cells into a quiescent G0-like growth state. Although thapsigargin blocks pumps essentially irreversibly, high serum (20{\%}) induces appearance of new pump protein, return of functional pools, and reentry of cells into the cell cycle (Waldron, R. T., Short, A. D., Meadows, J. J., Ghosh, T. K., and Gill, D. L. (1994) J. Biol. Chem. 269, 11927-11933). Through analysis of the effects of defined serum components and growth supplements, we reveal here that the factors in serum responsible for inducing recovery of Ca2+ pools and growth in thapsigargin-arrested DDT1MF-2 cells are exactly mimicked by the three essential fatty acids, arachidonic, linoleic, and α-linolenic acids. The EC50 values for arachidonic and linoleic acids on growth induction of thapsigargin-arrested cells were the same, approximately 5 μM. Nonessential fatty acids, including myristic, palmitic, stearic, oleic, and arachidic acids, were without any effect. Although not proven to be the active component of serum, levels of arachidonic and linoleic acids in serum were sufficient to explain serum-induced growth recovery. Significantly, arachidonic or linoleic acids induced complete recovery of bradykinin-sensitive Ca2+ pools within 6 h of treatment of thapsigarginarrested cells. Protein synthesis inhibitors (cycloheximide or puromycin) completely blocked the appearance of serum-induced or arachidonic acid-induced agonistsensitive pools. The sensitivity and fatty acid specificity of Ca2+ pool recovery in thapsigargin-arrested cells were almost identical to that for growth recovery. No pool or growth recovery was observed with 5,8,11,14-eicosatetraynoic acid, the nonmetabolizable analogue of arachidonic acid, suggesting that conversion to eicosanoids underlies the pool and growth recovery induced by essential fatty acids. The results provide not only further information on the link between Ca2+ pools and cell growth but also evidence for a potentially important signaling pathway involved in inducing transition from a stationary to a proliferative growth state.",
author = "Graber, {Matthew N.} and Amparo Alfonso and Donald Gill",
year = "1996",
month = "1",
day = "12",
doi = "10.1074/jbc.271.2.883",
language = "English (US)",
volume = "271",
pages = "883--888",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "2",

}

Ca2+ pools and cell growth : Arachidonic acid induces recovery of cells growth-arrested by Ca2+ pool depletion. / Graber, Matthew N.; Alfonso, Amparo; Gill, Donald.

In: Journal of Biological Chemistry, Vol. 271, No. 2, 12.01.1996, p. 883-888.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Ca2+ pools and cell growth

T2 - Arachidonic acid induces recovery of cells growth-arrested by Ca2+ pool depletion

AU - Graber, Matthew N.

AU - Alfonso, Amparo

AU - Gill, Donald

PY - 1996/1/12

Y1 - 1996/1/12

N2 - The intracellular Ca2+ pump blocker, thapsigargin, induces emptying of Ca2+ pools and entry of DDT1MF-2 smooth muscle cells into a quiescent G0-like growth state. Although thapsigargin blocks pumps essentially irreversibly, high serum (20%) induces appearance of new pump protein, return of functional pools, and reentry of cells into the cell cycle (Waldron, R. T., Short, A. D., Meadows, J. J., Ghosh, T. K., and Gill, D. L. (1994) J. Biol. Chem. 269, 11927-11933). Through analysis of the effects of defined serum components and growth supplements, we reveal here that the factors in serum responsible for inducing recovery of Ca2+ pools and growth in thapsigargin-arrested DDT1MF-2 cells are exactly mimicked by the three essential fatty acids, arachidonic, linoleic, and α-linolenic acids. The EC50 values for arachidonic and linoleic acids on growth induction of thapsigargin-arrested cells were the same, approximately 5 μM. Nonessential fatty acids, including myristic, palmitic, stearic, oleic, and arachidic acids, were without any effect. Although not proven to be the active component of serum, levels of arachidonic and linoleic acids in serum were sufficient to explain serum-induced growth recovery. Significantly, arachidonic or linoleic acids induced complete recovery of bradykinin-sensitive Ca2+ pools within 6 h of treatment of thapsigarginarrested cells. Protein synthesis inhibitors (cycloheximide or puromycin) completely blocked the appearance of serum-induced or arachidonic acid-induced agonistsensitive pools. The sensitivity and fatty acid specificity of Ca2+ pool recovery in thapsigargin-arrested cells were almost identical to that for growth recovery. No pool or growth recovery was observed with 5,8,11,14-eicosatetraynoic acid, the nonmetabolizable analogue of arachidonic acid, suggesting that conversion to eicosanoids underlies the pool and growth recovery induced by essential fatty acids. The results provide not only further information on the link between Ca2+ pools and cell growth but also evidence for a potentially important signaling pathway involved in inducing transition from a stationary to a proliferative growth state.

AB - The intracellular Ca2+ pump blocker, thapsigargin, induces emptying of Ca2+ pools and entry of DDT1MF-2 smooth muscle cells into a quiescent G0-like growth state. Although thapsigargin blocks pumps essentially irreversibly, high serum (20%) induces appearance of new pump protein, return of functional pools, and reentry of cells into the cell cycle (Waldron, R. T., Short, A. D., Meadows, J. J., Ghosh, T. K., and Gill, D. L. (1994) J. Biol. Chem. 269, 11927-11933). Through analysis of the effects of defined serum components and growth supplements, we reveal here that the factors in serum responsible for inducing recovery of Ca2+ pools and growth in thapsigargin-arrested DDT1MF-2 cells are exactly mimicked by the three essential fatty acids, arachidonic, linoleic, and α-linolenic acids. The EC50 values for arachidonic and linoleic acids on growth induction of thapsigargin-arrested cells were the same, approximately 5 μM. Nonessential fatty acids, including myristic, palmitic, stearic, oleic, and arachidic acids, were without any effect. Although not proven to be the active component of serum, levels of arachidonic and linoleic acids in serum were sufficient to explain serum-induced growth recovery. Significantly, arachidonic or linoleic acids induced complete recovery of bradykinin-sensitive Ca2+ pools within 6 h of treatment of thapsigarginarrested cells. Protein synthesis inhibitors (cycloheximide or puromycin) completely blocked the appearance of serum-induced or arachidonic acid-induced agonistsensitive pools. The sensitivity and fatty acid specificity of Ca2+ pool recovery in thapsigargin-arrested cells were almost identical to that for growth recovery. No pool or growth recovery was observed with 5,8,11,14-eicosatetraynoic acid, the nonmetabolizable analogue of arachidonic acid, suggesting that conversion to eicosanoids underlies the pool and growth recovery induced by essential fatty acids. The results provide not only further information on the link between Ca2+ pools and cell growth but also evidence for a potentially important signaling pathway involved in inducing transition from a stationary to a proliferative growth state.

UR - http://www.scopus.com/inward/record.url?scp=0029670789&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029670789&partnerID=8YFLogxK

U2 - 10.1074/jbc.271.2.883

DO - 10.1074/jbc.271.2.883

M3 - Article

C2 - 8557700

AN - SCOPUS:0029670789

VL - 271

SP - 883

EP - 888

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 2

ER -