Catalysts for nitrogen reduction to ammonia

Shelby L. Foster, Sergio I.Perez Bakovic, Royce D. Duda, Sharad Maheshwari, Ross D. Milton, Shelley D. Minteer, Michael J. Janik, Julie N. Renner, Lauren F. Greenlee

Research output: Contribution to journalArticlepeer-review

323 Scopus citations

Abstract

The production of synthetic ammonia remains dependent on the energy- and capital-intensive Haber-Bosch process. Extensive research in molecular catalysis has demonstrated ammonia production from dinitrogen, albeit at low production rates. Mechanistic understanding of dinitrogen reduction to ammonia continues to be delineated through study of molecular catalyst structure, as well as through understanding the naturally occurring nitrogenase enzyme. The transition to Haber-Bosch alternatives through robust, heterogeneous catalyst surfaces remains an unsolved research challenge. Catalysts for electrochemical reduction of dinitrogen to ammonia are a specific focus of research, due to the potential to compete with the Haber-Bosch process and reduce associated carbon dioxide emissions. However, limited progress has been made to date, as most electrocatalyst surfaces lack specificity towards nitrogen fixation. In this Review, we discuss the progress of the field in developing a mechanistic understanding of nitrogenase-promoted and molecular catalyst-promoted ammonia synthesis and provide a review of the state of the art and scientific needs for heterogeneous electrocatalysts. [Figure not available: see fulltext.]

Original languageEnglish (US)
Pages (from-to)490-500
Number of pages11
JournalNature Catalysis
Volume1
Issue number7
DOIs
StatePublished - Jul 1 2018

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Bioengineering
  • Biochemistry
  • Process Chemistry and Technology

Fingerprint Dive into the research topics of 'Catalysts for nitrogen reduction to ammonia'. Together they form a unique fingerprint.

Cite this