CBP-mediated FOXO-1 acetylation inhibits pancreatic tumor growth by targeting SirT

Kartick C. Pramanik, Neel M. Fofaria, Parul Gupta, Sanjay K. Srivastava

Research output: Contribution to journalArticlepeer-review

45 Scopus citations

Abstract

Here, we investigated the potential mechanism of capsaicin-mediated apoptosis in pancreatic cancer cells. Capsaicin treatment phosphorylated c-jun-NH2-kinase (JNK); forkhead box transcription factor, class O (FOXO1); and BIM in BxPC-3, AsPC-1, and L3.6PL cells. The expression of BIM increased in response to capsaicin treatment. Capsaicin treatment caused cleavage of caspase-3 and PARP, indicating apoptosis. Antioxidants tiron and PEG-catalase blocked capsaicin-mediated JNK/FOXO/BIM activation and protected the cells from apoptosis. Furthermore, capsaicin treatment caused a steady increase in the nuclear expression of FOXO-1, leading to increased DNA binding. Capsaicin-mediated expression of BIM was found to be directly dependent on the acetylation of FOXO-1. The expression of CREB-binding protein (CBP) was increased, whereas SirT-1 was reduced by capsaicin treatment. Using acetylation mimic or defective mutants, our result demonstrated that phosphorylation of FOXO-1 was mediated through acetylation by capsaicin treatment. JNK inhibitor attenuated the phosphorylation of FOXO-1, activation of BIM, and abrogated capsaicin-induced apoptosis. Moreover, silencing FOXO1 by siRNA blocked capsaicin-mediated activation of BIM and apoptosis, whereas overexpression of FOXO-1 augmented its effects. Silencing Bim drastically reduced capsaicin-mediated cleavage of caspase-3 and PARP, indicating the role of BIM in apoptosis. Oral administration of 5 mg/kg capsaicin substantially suppressed the growth of BxPC-3 tumor xenografts in athymic nude mice. Tumors from capsaicin-treated mice showed an increase in the phosphorylation of JNK, FOXO-1, BIM, and levels of CBP, cleavage of caspase-3, PARP, and decreased SirT-1 expression. Taken together, our results suggest that capsaicin activated JNK and FOXO-1, leading to the acetylation of FOXO-1 through CBP and SirT-1. Acetylated FOXO1 induced apoptosis in pancreatic cancer cells through BIM activation.

Original languageEnglish (US)
Pages (from-to)687-698
Number of pages12
JournalMolecular cancer therapeutics
Volume13
Issue number3
DOIs
StatePublished - Mar 2014

All Science Journal Classification (ASJC) codes

  • Oncology
  • Cancer Research

Fingerprint Dive into the research topics of 'CBP-mediated FOXO-1 acetylation inhibits pancreatic tumor growth by targeting SirT'. Together they form a unique fingerprint.

Cite this