Abstract
It is commonly assumed in the studies of the fractional quantum Hall effect that the physics of a fractional quantum Hall state, in particular the character of its excitations, is invariant under a continuous deformation of the Hamiltonian during which the gap does not close. We show in this article that, at least for finite systems, as the interaction is changed from a model three body interaction to Coulomb, the ground state at filling factor ν=2/5 evolves continuously from the so-called Gaffnian wave function to the composite fermion wave function, but the quasiholes alter their character in a nonperturbative manner. This is attributed to the fact that the Coulomb interaction opens a gap in the Gaffnian quasihole sector, pushing many of the states to very high energies. Interestingly, the states below the gap are found to have a one-to-one correspondence with the composite fermion theory, suggesting that the Gaffnian model contains composite fermions, and that the Gaffnian quasiholes are unstable to the formation of composite fermions when a two-body interaction term is switched on. General implications of this study are discussed.
Original language | English (US) |
---|---|
Article number | 205301 |
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 80 |
Issue number | 20 |
DOIs | |
State | Published - Nov 4 2009 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics