Changes in finger coordination and responses to single pulse TMS of motor cortex during practice of a multifinger force production task

Mark Latash, Kielan Yarrow, John C. Rothwell

Research output: Contribution to journalArticle

46 Citations (Scopus)

Abstract

We investigated the changes in finger coordination and in finger force responses to transcranial magnetic stimulation (TMS) applied over the motor cortex associated with a single practice session of an accurate ramp force production task. Subjects pressed with their index, middle and ring fingers onto three force transducers fixed to a rigid platform that was balanced on a narrow pivot under the middle finger. The task was to produce a smoothly increasing ramp of total force from 0 to 25 N over 4 s following a visual target. Subjects performed three brief series of trials without TMS (12 trials each) in the beginning, in the middle, and in the end of the experiment. The main part of the experiment involved 173 trials, and in each of them at random times in the ramp a suprathreshold TMS pulse was applied over the hand area of the contralateral motor cortex in order to evoke a twitch in the finger flexor muscles. At the end of the experiment the subjects also performed 12 constant force production trials, and TMS was unexpectedly applied in each trial. During the ramp force trials the amplitude of the response to TMS was largely independent of the force exerted at the time of stimulation, whereas in static holding trials the amplitude of the response increased with higher levels of background contraction. Over time subjects improved their overall tracking performance: the variance of the force trajectory (VarFTOT), as computed over sets of unperturbed trials, declined by 60% after the first 100 trials, but there was little additional improvement after the second 100 trials. Variance in the force finger space related to the total moment with respect to the pivot also showed a decline during the first half of practice and minimal further changes during the second half. In contrast, finger force variance that did not affect either total force or total moment showed no changes after the first 100 trials and a decline during the second 100 trials. This variance component quantified per finger was significantly larger than those related to the total force and total moment. The mean size of the TMS-induced phasic force increment decreased by 12% over the course of the 200 trials. The forces evoked in the index and ring fingers gradually became more equal, reducing the total moment with respect to the pivot and improving balance. We speculate that development of a relatively low twitch force with low total moment on the pivot made it easier for subjects to continue tracking after the TMS pulse. Such changes could well be correlated with the degree of corticospinal involvement in the task. The results suggest task specific, practice-related plastic changes in neural structures involved in the responses to TMS.

Original languageEnglish (US)
Pages (from-to)60-71
Number of pages12
JournalExperimental Brain Research
Volume151
Issue number1
DOIs
StatePublished - Jul 1 2003

Fingerprint

Transcranial Magnetic Stimulation
Motor Cortex
Advisory Committees
Fingers
Architectural Accessibility
Transducers
Hand
Muscles

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)

Cite this

@article{e5bf8542b24d4c8bbffa261f3107f81c,
title = "Changes in finger coordination and responses to single pulse TMS of motor cortex during practice of a multifinger force production task",
abstract = "We investigated the changes in finger coordination and in finger force responses to transcranial magnetic stimulation (TMS) applied over the motor cortex associated with a single practice session of an accurate ramp force production task. Subjects pressed with their index, middle and ring fingers onto three force transducers fixed to a rigid platform that was balanced on a narrow pivot under the middle finger. The task was to produce a smoothly increasing ramp of total force from 0 to 25 N over 4 s following a visual target. Subjects performed three brief series of trials without TMS (12 trials each) in the beginning, in the middle, and in the end of the experiment. The main part of the experiment involved 173 trials, and in each of them at random times in the ramp a suprathreshold TMS pulse was applied over the hand area of the contralateral motor cortex in order to evoke a twitch in the finger flexor muscles. At the end of the experiment the subjects also performed 12 constant force production trials, and TMS was unexpectedly applied in each trial. During the ramp force trials the amplitude of the response to TMS was largely independent of the force exerted at the time of stimulation, whereas in static holding trials the amplitude of the response increased with higher levels of background contraction. Over time subjects improved their overall tracking performance: the variance of the force trajectory (VarFTOT), as computed over sets of unperturbed trials, declined by 60{\%} after the first 100 trials, but there was little additional improvement after the second 100 trials. Variance in the force finger space related to the total moment with respect to the pivot also showed a decline during the first half of practice and minimal further changes during the second half. In contrast, finger force variance that did not affect either total force or total moment showed no changes after the first 100 trials and a decline during the second 100 trials. This variance component quantified per finger was significantly larger than those related to the total force and total moment. The mean size of the TMS-induced phasic force increment decreased by 12{\%} over the course of the 200 trials. The forces evoked in the index and ring fingers gradually became more equal, reducing the total moment with respect to the pivot and improving balance. We speculate that development of a relatively low twitch force with low total moment on the pivot made it easier for subjects to continue tracking after the TMS pulse. Such changes could well be correlated with the degree of corticospinal involvement in the task. The results suggest task specific, practice-related plastic changes in neural structures involved in the responses to TMS.",
author = "Mark Latash and Kielan Yarrow and Rothwell, {John C.}",
year = "2003",
month = "7",
day = "1",
doi = "10.1007/s00221-003-1480-y",
language = "English (US)",
volume = "151",
pages = "60--71",
journal = "Experimental Brain Research",
issn = "0014-4819",
publisher = "Springer Verlag",
number = "1",

}

Changes in finger coordination and responses to single pulse TMS of motor cortex during practice of a multifinger force production task. / Latash, Mark; Yarrow, Kielan; Rothwell, John C.

In: Experimental Brain Research, Vol. 151, No. 1, 01.07.2003, p. 60-71.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Changes in finger coordination and responses to single pulse TMS of motor cortex during practice of a multifinger force production task

AU - Latash, Mark

AU - Yarrow, Kielan

AU - Rothwell, John C.

PY - 2003/7/1

Y1 - 2003/7/1

N2 - We investigated the changes in finger coordination and in finger force responses to transcranial magnetic stimulation (TMS) applied over the motor cortex associated with a single practice session of an accurate ramp force production task. Subjects pressed with their index, middle and ring fingers onto three force transducers fixed to a rigid platform that was balanced on a narrow pivot under the middle finger. The task was to produce a smoothly increasing ramp of total force from 0 to 25 N over 4 s following a visual target. Subjects performed three brief series of trials without TMS (12 trials each) in the beginning, in the middle, and in the end of the experiment. The main part of the experiment involved 173 trials, and in each of them at random times in the ramp a suprathreshold TMS pulse was applied over the hand area of the contralateral motor cortex in order to evoke a twitch in the finger flexor muscles. At the end of the experiment the subjects also performed 12 constant force production trials, and TMS was unexpectedly applied in each trial. During the ramp force trials the amplitude of the response to TMS was largely independent of the force exerted at the time of stimulation, whereas in static holding trials the amplitude of the response increased with higher levels of background contraction. Over time subjects improved their overall tracking performance: the variance of the force trajectory (VarFTOT), as computed over sets of unperturbed trials, declined by 60% after the first 100 trials, but there was little additional improvement after the second 100 trials. Variance in the force finger space related to the total moment with respect to the pivot also showed a decline during the first half of practice and minimal further changes during the second half. In contrast, finger force variance that did not affect either total force or total moment showed no changes after the first 100 trials and a decline during the second 100 trials. This variance component quantified per finger was significantly larger than those related to the total force and total moment. The mean size of the TMS-induced phasic force increment decreased by 12% over the course of the 200 trials. The forces evoked in the index and ring fingers gradually became more equal, reducing the total moment with respect to the pivot and improving balance. We speculate that development of a relatively low twitch force with low total moment on the pivot made it easier for subjects to continue tracking after the TMS pulse. Such changes could well be correlated with the degree of corticospinal involvement in the task. The results suggest task specific, practice-related plastic changes in neural structures involved in the responses to TMS.

AB - We investigated the changes in finger coordination and in finger force responses to transcranial magnetic stimulation (TMS) applied over the motor cortex associated with a single practice session of an accurate ramp force production task. Subjects pressed with their index, middle and ring fingers onto three force transducers fixed to a rigid platform that was balanced on a narrow pivot under the middle finger. The task was to produce a smoothly increasing ramp of total force from 0 to 25 N over 4 s following a visual target. Subjects performed three brief series of trials without TMS (12 trials each) in the beginning, in the middle, and in the end of the experiment. The main part of the experiment involved 173 trials, and in each of them at random times in the ramp a suprathreshold TMS pulse was applied over the hand area of the contralateral motor cortex in order to evoke a twitch in the finger flexor muscles. At the end of the experiment the subjects also performed 12 constant force production trials, and TMS was unexpectedly applied in each trial. During the ramp force trials the amplitude of the response to TMS was largely independent of the force exerted at the time of stimulation, whereas in static holding trials the amplitude of the response increased with higher levels of background contraction. Over time subjects improved their overall tracking performance: the variance of the force trajectory (VarFTOT), as computed over sets of unperturbed trials, declined by 60% after the first 100 trials, but there was little additional improvement after the second 100 trials. Variance in the force finger space related to the total moment with respect to the pivot also showed a decline during the first half of practice and minimal further changes during the second half. In contrast, finger force variance that did not affect either total force or total moment showed no changes after the first 100 trials and a decline during the second 100 trials. This variance component quantified per finger was significantly larger than those related to the total force and total moment. The mean size of the TMS-induced phasic force increment decreased by 12% over the course of the 200 trials. The forces evoked in the index and ring fingers gradually became more equal, reducing the total moment with respect to the pivot and improving balance. We speculate that development of a relatively low twitch force with low total moment on the pivot made it easier for subjects to continue tracking after the TMS pulse. Such changes could well be correlated with the degree of corticospinal involvement in the task. The results suggest task specific, practice-related plastic changes in neural structures involved in the responses to TMS.

UR - http://www.scopus.com/inward/record.url?scp=0038685358&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0038685358&partnerID=8YFLogxK

U2 - 10.1007/s00221-003-1480-y

DO - 10.1007/s00221-003-1480-y

M3 - Article

VL - 151

SP - 60

EP - 71

JO - Experimental Brain Research

JF - Experimental Brain Research

SN - 0014-4819

IS - 1

ER -