TY - JOUR
T1 - Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers
AU - Park, Seung Eek
AU - Shrout, Thomas R.
PY - 1996
Y1 - 1996
N2 - For ultrasonic transducers, piezoelectric ceramics offer a range of dielectric constants (K approx.1000-5000), large piezoelectric coefficients (dijapprox.200-700pC/N), and high electromechanical coupling (kT≅50%, k33≅75%). For several decades, the material of choice has been polycrystalline ceramics based on the solid solution Pb(Zr1-x, Tix)O3 (PZT), compositionally engineered near the morphotropic phase boundary (MPB). The search for alternative MPB systems has led researchers to revisit relaxor-based materials with the general formula, Pb(B1,B2)O3 (B1:Zn2+, Mg2+, Sc3+, Ni2+ ..., B2:Nb5+, Ta5+...). There are some claims of superior dielectric and piezoelectric performance compared to that of PZT materials. However, when the properties are examined relative to transition temperature (Tc), these differences are not significant. In the single crystal form, however, Relaxor-PT materials, represented by Pb(Zn1/3Nb2/3)O3 - PbTiO3 (PZN-PT), Pb(Mg1/3Nb2/3)O3 - PbTiO3 (PMN-PT) have been found to exhibit longitudinal coupling coefficients (k33)>90%, thickness coupling (kT)>63%, dielectric constants ranging from 1000 to 5000 with low dielectric loss <1%, and exceptional piezoelectric coefficients d33>2000pC/N, the later promising for high energy density actuators. For single crystal piezoelectrics to become the next generation material of ultrasonic transducers, further investigation in crystal growth, device fabrication and testing are required.
AB - For ultrasonic transducers, piezoelectric ceramics offer a range of dielectric constants (K approx.1000-5000), large piezoelectric coefficients (dijapprox.200-700pC/N), and high electromechanical coupling (kT≅50%, k33≅75%). For several decades, the material of choice has been polycrystalline ceramics based on the solid solution Pb(Zr1-x, Tix)O3 (PZT), compositionally engineered near the morphotropic phase boundary (MPB). The search for alternative MPB systems has led researchers to revisit relaxor-based materials with the general formula, Pb(B1,B2)O3 (B1:Zn2+, Mg2+, Sc3+, Ni2+ ..., B2:Nb5+, Ta5+...). There are some claims of superior dielectric and piezoelectric performance compared to that of PZT materials. However, when the properties are examined relative to transition temperature (Tc), these differences are not significant. In the single crystal form, however, Relaxor-PT materials, represented by Pb(Zn1/3Nb2/3)O3 - PbTiO3 (PZN-PT), Pb(Mg1/3Nb2/3)O3 - PbTiO3 (PMN-PT) have been found to exhibit longitudinal coupling coefficients (k33)>90%, thickness coupling (kT)>63%, dielectric constants ranging from 1000 to 5000 with low dielectric loss <1%, and exceptional piezoelectric coefficients d33>2000pC/N, the later promising for high energy density actuators. For single crystal piezoelectrics to become the next generation material of ultrasonic transducers, further investigation in crystal growth, device fabrication and testing are required.
UR - http://www.scopus.com/inward/record.url?scp=0030351763&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030351763&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:0030351763
SN - 1051-0117
VL - 2
SP - 935
EP - 942
JO - Proceedings of the IEEE Ultrasonics Symposium
JF - Proceedings of the IEEE Ultrasonics Symposium
ER -