Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers

Seung Eek Park, Thomas R. Shrout

Research output: Contribution to journalArticlepeer-review

771 Scopus citations


For ultrasonic transducers, piezoelectric ceramics offer a range of dielectric constants (K ∼ 1000-5000), large piezoelectric coefficients (dij ∼ 200-700 pC/N), and high electromechanical coupling (fey 50%, k33 ≃ = 75%). For several decades, the material of choice has been polycrystalline ceramics based on the solid solution Pb(Zr1-x,Tix)O3 (PZT), compositionally engineered near the morphotropic phase boundary (MPB). The search for alternative MPB systems has led researchers to revisit relaxor-based materials with the general formula, Pb(B1,B2)O3 (B1:Zn2+, Mg2+, Sc3+, Ni2+ ..., B2:Nb5+, Ta5+ ...). There are some claims of superior dielectric and piezoelectric performance compared to that of PZT materials. However, when the properties are examined relative to transition temperature (Tc), these differences are not significant. In the single crystal form, however, Relaxor-PT materials, represented by Pb(Zn1/3Nb2/3)O3 - PbTiO3 (PZN-PT), Pb(Mg1/3Nb2/3)O3 - PbTiO3 (PMN-PT) have been found to exhibit longitudinal coupling coefficients (k33) > 90%, thickness coupling (kT) > 63%, dielectric constants ranging from 1000 to 5000 with low dielectric loss < 1%, and exceptional piezoelectric coefficients d33 > 2000 pC/N, the later promising for high energy density actuators. For single crystal piezoelectrics to become the next generation material of ultrasonic transducers, further investigation in crystal growth, device fabrication and testing are required.

Original languageEnglish (US)
Pages (from-to)1140-1147
Number of pages8
JournalIEEE transactions on ultrasonics, ferroelectrics, and frequency control
Issue number5
StatePublished - 1997

All Science Journal Classification (ASJC) codes

  • Instrumentation
  • Acoustics and Ultrasonics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers'. Together they form a unique fingerprint.

Cite this