Characterization of full set material constants and their temperature dependence for piezoelectric materials using resonant ultrasound spectroscopy

Liguo Tang, Wenwu Cao

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

During the operation of high power electromechanical devices, a temperature rise is unavoidable due to mechanical and electrical losses, causing the degradation of device performance. In order to evaluate such degradations using computer simulations, full matrix material properties at elevated temperatures are needed as inputs. It is extremely difficult to measure such data for ferroelectric materials due to their strong anisotropic nature and property variation among samples of different geometries. Because the degree of depolarization is boundary condition dependent, data obtained by the IEEE (Institute of Electrical and Electronics Engineers) impedance resonance technique, which requires several samples with drastically different geometries, usually lack self-consistency. The resonant ultrasound spectroscopy (RUS) technique allows the full set material constants to be measured using only one sample, which can eliminate errors caused by sample to sample variation. A detailed RUS procedure is demonstrated here using a lead zirconate titanate (PZT-4) piezoceramic sample. In the example, the complete set of material constants was measured from room temperature to 120 °C. Measured free dielectric constants εT11 and εT11 were compared with calculated ones based on the measured full set data, and piezoelectric constants d15 and d33 were also calculated using different formulas. Excellent agreement was found in the entire range of temperatures, which confirmed the self-consistency of the data set obtained by the RUS.

Original languageEnglish (US)
Article numbere53461
JournalJournal of Visualized Experiments
Volume2016
Issue number110
DOIs
StatePublished - Apr 2016

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)
  • Chemical Engineering(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)

Fingerprint Dive into the research topics of 'Characterization of full set material constants and their temperature dependence for piezoelectric materials using resonant ultrasound spectroscopy'. Together they form a unique fingerprint.

Cite this