Characterization of Si Hybrid CMOS Detectors for use in the Soft X-ray Band

Zachary Prieskorn, Christopher V. Griffith, Stephen D. Bongiorno, Abraham D. Falcone, David N. Burrows

Research output: Contribution to journalArticlepeer-review

25 Scopus citations


We report on the characterization of four Teledyne Imaging Systems HAWAII Hybrid Si CMOS detectors designed for X-ray detection. Three H1RG detectors were studied along with a specially configured H2RG. Read noise measurements were performed, with the lowest result being 7.1 e RMS. Interpixel capacitive crosstalk (IPC) was measured for the three H1RGs and for the H2RG. The H1RGs had IPC upper limits of 4.0–5.5% (up & down pixels) and 8.7–9.7% (left & right pixels), indicating a clear asymmetry. Energy resolution is reported for two X-ray lines, 1.5 & 5.9 keV, at multiple temperatures between 150–210 K. The best resolution measured at 5.9 keV was 250 eV (4.2%) at 150 K, with IPC contributing significantly to this measured energy distribution. The H2RG, with a unique configuration designed to decrease the capacitive coupling between ROIC pixels, had an IPC of 1.8±1.0% indicating a dramatic improvement in IPC with no measurable asymmetry. We also measured dark current as a function of temperature for each detector. For the detector with the lowest dark current, at 150 K, we measured a dark current of 0.020±0.001 (e sec−1 pix−1). There is also a consistent break in the fit to the dark current data for each detector. Above 180 K, all the data can be fit by the product of a power law in temperature and an exponential. Below 180 K the dark current decreases more slowly; a shallow power law or constant must be added to each fit, indicating a different form of dark current is dominant in this temperature regime. Dark current figures of merit at 293 K are estimated from the fit for each detector.

Original languageEnglish (US)
Pages (from-to)83-93
Number of pages11
JournalNuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
StatePublished - Jul 21 2013

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Instrumentation


Dive into the research topics of 'Characterization of Si Hybrid CMOS Detectors for use in the Soft X-ray Band'. Together they form a unique fingerprint.

Cite this