TY - JOUR
T1 - Characterization of the basal angiosperm Aristolochia fimbriata
T2 - A potential experimental system for genetic studies
AU - Bliss, Barbara J.
AU - Wanke, Stefan
AU - Barakat, Abdelali
AU - Ayyampalayam, Saravanaraj
AU - Wickett, Norman
AU - Wall, P. Kerr
AU - Jiao, Yuannian
AU - Landherr, Lena
AU - Ralph, Paula E.
AU - Hu, Yi
AU - Neinhuis, Christoph
AU - Leebens-Mack, Jim
AU - Arumuganathan, Kathiravetpilla
AU - Clifton, Sandra W.
AU - Maximova, Siela N.
AU - Ma, Hong
AU - dePamphilis, Claude W.
N1 - Funding Information:
We thank A. Omeis for plant care, Jason Stetson and Yunjiao Joy Wang for DNA isolations, and Joel McNeal, Mario Blanco, Favio Gonzalez, Al Hill, Natalia Pabon-Mora, Larry Rosen, Russ Strover, Victor Wong, the New York Botanical Garden, the Botanical Gardens at the University of Ulm, Dresden, Universidade de Coimbra, and Dawe’s Arboretum for seed and plant material. This work was supported in part by the NSF Plant Genome Research Program, awards DBI-0115684 (The Floral Genome Project) and DEB 0638595 (The Ancestral Angiosperm Genome Project), by the Department of Biology and Huck Institutes of Life Sciences of the Pennsylvania State University, and by a postdoctoral grant to SW from the German Academic Exchange Service (DAAD).
PY - 2013/1/24
Y1 - 2013/1/24
N2 - Background: Previous studies in basal angiosperms have provided insight into the diversity within the angiosperm lineage and helped to polarize analyses of flowering plant evolution. However, there is still not an experimental system for genetic studies among basal angiosperms to facilitate comparative studies and functional investigation. It would be desirable to identify a basal angiosperm experimental system that possesses many of the features found in existing plant model systems (e.g., Arabidopsis and Oryza).Results: We have considered all basal angiosperm families for general characteristics important for experimental systems, including availability to the scientific community, growth habit, and membership in a large basal angiosperm group that displays a wide spectrum of phenotypic diversity. Most basal angiosperms are woody or aquatic, thus are not well-suited for large scale cultivation, and were excluded. We further investigated members of Aristolochiaceae for ease of culture, life cycle, genome size, and chromosome number. We demonstrated self-compatibility for Aristolochia elegans and A. fimbriata, and transformation with a GFP reporter construct for Saruma henryi and A. fimbriata. Furthermore, A. fimbriata was easily cultivated with a life cycle of just three months, could be regenerated in a tissue culture system, and had one of the smallest genomes among basal angiosperms. An extensive multi-tissue EST dataset was produced for A. fimbriata that includes over 3.8 million 454 sequence reads.Conclusions: Aristolochia fimbriata has numerous features that facilitate genetic studies and is suggested as a potential model system for use with a wide variety of technologies. Emerging genetic and genomic tools for A. fimbriata and closely related species can aid the investigation of floral biology, developmental genetics, biochemical pathways important in plant-insect interactions as well as human health, and various other features present in early angiosperms.
AB - Background: Previous studies in basal angiosperms have provided insight into the diversity within the angiosperm lineage and helped to polarize analyses of flowering plant evolution. However, there is still not an experimental system for genetic studies among basal angiosperms to facilitate comparative studies and functional investigation. It would be desirable to identify a basal angiosperm experimental system that possesses many of the features found in existing plant model systems (e.g., Arabidopsis and Oryza).Results: We have considered all basal angiosperm families for general characteristics important for experimental systems, including availability to the scientific community, growth habit, and membership in a large basal angiosperm group that displays a wide spectrum of phenotypic diversity. Most basal angiosperms are woody or aquatic, thus are not well-suited for large scale cultivation, and were excluded. We further investigated members of Aristolochiaceae for ease of culture, life cycle, genome size, and chromosome number. We demonstrated self-compatibility for Aristolochia elegans and A. fimbriata, and transformation with a GFP reporter construct for Saruma henryi and A. fimbriata. Furthermore, A. fimbriata was easily cultivated with a life cycle of just three months, could be regenerated in a tissue culture system, and had one of the smallest genomes among basal angiosperms. An extensive multi-tissue EST dataset was produced for A. fimbriata that includes over 3.8 million 454 sequence reads.Conclusions: Aristolochia fimbriata has numerous features that facilitate genetic studies and is suggested as a potential model system for use with a wide variety of technologies. Emerging genetic and genomic tools for A. fimbriata and closely related species can aid the investigation of floral biology, developmental genetics, biochemical pathways important in plant-insect interactions as well as human health, and various other features present in early angiosperms.
UR - http://www.scopus.com/inward/record.url?scp=84872676176&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84872676176&partnerID=8YFLogxK
U2 - 10.1186/1471-2229-13-13
DO - 10.1186/1471-2229-13-13
M3 - Article
C2 - 23347749
AN - SCOPUS:84872676176
SN - 1471-2229
VL - 13
JO - BMC Plant Biology
JF - BMC Plant Biology
IS - 1
M1 - 13
ER -