Characterizing the number of m-ary partitions modulo m

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Motivated by a recent conjecture of the second author related to the ternary partition function, we provide an elegant characterization of the values bm(mn) modulo m where bm(n) is the number of m-ary partitions of the integer n and m ≥ 2 is a fixed integer.

Original languageEnglish (US)
Pages (from-to)880-885
Number of pages6
JournalAmerican Mathematical Monthly
Volume122
Issue number9
DOIs
StatePublished - Jan 1 2015

Fingerprint

Modulo
Partition
Integer
Ternary
Partition Function

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

Cite this

@article{21a4ef39acd64d80886804a7316605a8,
title = "Characterizing the number of m-ary partitions modulo m",
abstract = "Motivated by a recent conjecture of the second author related to the ternary partition function, we provide an elegant characterization of the values bm(mn) modulo m where bm(n) is the number of m-ary partitions of the integer n and m ≥ 2 is a fixed integer.",
author = "Andrews, {George E.} and Fraenkel, {Aviezri S.} and Sellers, {James Allen}",
year = "2015",
month = "1",
day = "1",
doi = "10.4169/amer.math.monthly.122.9.880",
language = "English (US)",
volume = "122",
pages = "880--885",
journal = "American Mathematical Monthly",
issn = "0002-9890",
publisher = "Mathematical Association of America",
number = "9",

}

Characterizing the number of m-ary partitions modulo m. / Andrews, George E.; Fraenkel, Aviezri S.; Sellers, James Allen.

In: American Mathematical Monthly, Vol. 122, No. 9, 01.01.2015, p. 880-885.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Characterizing the number of m-ary partitions modulo m

AU - Andrews, George E.

AU - Fraenkel, Aviezri S.

AU - Sellers, James Allen

PY - 2015/1/1

Y1 - 2015/1/1

N2 - Motivated by a recent conjecture of the second author related to the ternary partition function, we provide an elegant characterization of the values bm(mn) modulo m where bm(n) is the number of m-ary partitions of the integer n and m ≥ 2 is a fixed integer.

AB - Motivated by a recent conjecture of the second author related to the ternary partition function, we provide an elegant characterization of the values bm(mn) modulo m where bm(n) is the number of m-ary partitions of the integer n and m ≥ 2 is a fixed integer.

UR - http://www.scopus.com/inward/record.url?scp=84975295570&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84975295570&partnerID=8YFLogxK

U2 - 10.4169/amer.math.monthly.122.9.880

DO - 10.4169/amer.math.monthly.122.9.880

M3 - Article

VL - 122

SP - 880

EP - 885

JO - American Mathematical Monthly

JF - American Mathematical Monthly

SN - 0002-9890

IS - 9

ER -