TY - JOUR
T1 - Characterizing Visualization Insights from Quantified Selfers' Personal Data Presentations
AU - Choe, Eun Kyoung
AU - Lee, Bongshin
AU - Schraefel, M. C.
N1 - Publisher Copyright:
© 1981-2012 IEEE.
PY - 2015/7/1
Y1 - 2015/7/1
N2 - Data visualization and analytics research has great potential to empower people to improve their lives by leveraging their own personal data. However, most quantified selfers (Q-Selfers) are neither visualization experts nor data scientists. Consequently, visualizations Q-Selfers created with their data are often not ideal for conveying insights. Aiming to design a visualization system to help nonexperts gain and comμnicate personal data insights, the authors conducted a predesign empirical study. Through the lens of Q-Selfers, they examined what insights people gain specifically from their personal data and how they use visualizations to communicate their insights. Based on their analysis of 30 quantified self-presentations, they characterized eight insight types (detail, self-reflection, trend, comparison, correlation, data summary, distribution, and outlier) and mapped the visual annotations used to communicate them. They further discussed four areas for the design of personal visualization systems, including support for encouraging self-reflection, gaining valid insight, comμnicating insight, and using visual annotations.
AB - Data visualization and analytics research has great potential to empower people to improve their lives by leveraging their own personal data. However, most quantified selfers (Q-Selfers) are neither visualization experts nor data scientists. Consequently, visualizations Q-Selfers created with their data are often not ideal for conveying insights. Aiming to design a visualization system to help nonexperts gain and comμnicate personal data insights, the authors conducted a predesign empirical study. Through the lens of Q-Selfers, they examined what insights people gain specifically from their personal data and how they use visualizations to communicate their insights. Based on their analysis of 30 quantified self-presentations, they characterized eight insight types (detail, self-reflection, trend, comparison, correlation, data summary, distribution, and outlier) and mapped the visual annotations used to communicate them. They further discussed four areas for the design of personal visualization systems, including support for encouraging self-reflection, gaining valid insight, comμnicating insight, and using visual annotations.
UR - http://www.scopus.com/inward/record.url?scp=84937714093&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84937714093&partnerID=8YFLogxK
U2 - 10.1109/MCG.2015.51
DO - 10.1109/MCG.2015.51
M3 - Article
AN - SCOPUS:84937714093
SN - 0272-1716
VL - 35
SP - 28
EP - 37
JO - IEEE Computer Graphics and Applications
JF - IEEE Computer Graphics and Applications
IS - 4
M1 - 7106391
ER -