Chromatographic separation of radioactive noble gases from xenon

D. S. Akerib, H. M. Araújo, X. Bai, A. J. Bailey, J. Balajthy, P. Beltrame, E. P. Bernard, A. Bernstein, T. P. Biesiadzinski, E. M. Boulton, R. Bramante, S. B. Cahn, Maria Del Carmen Carmona Benitez, C. Chan, A. A. Chiller, C. Chiller, T. Coffey, A. Currie, J. E. Cutter, T. J.R. Davison & 78 others A. Dobi, J. E.Y. Dobson, E. Druszkiewicz, B. N. Edwards, C. H. Faham, S. Fiorucci, R. J. Gaitskell, V. M. Gehman, C. Ghag, K. R. Gibson, M. G.D. Gilchriese, C. R. Hall, M. Hanhardt, S. J. Haselschwardt, S. A. Hertel, D. P. Hogan, M. Horn, D. Q. Huang, C. M. Ignarra, M. Ihm, R. G. Jacobsen, W. Ji, K. Kamdin, K. Kazkaz, D. Khaitan, R. Knoche, N. A. Larsen, C. Lee, B. G. Lenardo, K. T. Lesko, A. Lindote, M. I. Lopes, A. Manalaysay, R. L. Mannino, M. F. Marzioni, D. N. McKinsey, D. M. Mei, J. Mock, M. Moongweluwan, J. A. Morad, A. St J. Murphy, C. Nehrkorn, H. N. Nelson, F. Neves, K. O'Sullivan, K. C. Oliver-Mallory, K. J. Palladino, E. K. Pease, K. Pech, P. Phelps, L. Reichhart, C. Rhyne, S. Shaw, T. A. Shutt, C. Silva, V. N. Solovov, P. Sorensen, S. Stephenson, T. J. Sumner, M. Szydagis, D. J. Taylor, W. Taylor, B. P. Tennyson, P. A. Terman, D. R. Tiedt, W. H. To, M. Tripathi, L. Tvrznikova, S. Uvarov, J. R. Verbus, R. C. Webb, J. T. White, T. J. Whitis, M. S. Witherell, F. L.H. Wolfs, K. Yazdani, S. K. Young, C. Zhang

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

The Large Underground Xenon (LUX) experiment operates at the Sanford Underground Research Facility to detect nuclear recoils from the hypothetical Weakly Interacting Massive Particles (WIMPs) on a liquid xenon target. Liquid xenon typically contains trace amounts of the noble radioactive isotopes 85Kr and 39Ar that are not removed by the in situ gas purification system. The decays of these isotopes at concentrations typical of research-grade xenon would be a dominant background for a WIMP search experiment. To remove these impurities from the liquid xenon, a chromatographic separation system based on adsorption on activated charcoal was built. 400 kg of xenon was processed, reducing the average concentration of krypton from 130 ppb to 3.5 ppt as measured by a cold-trap assisted mass spectroscopy system. A 50 kg batch spiked to 0.001 g/g of krypton was processed twice and reduced to an upper limit of 0.2 ppt.

Original languageEnglish (US)
Pages (from-to)80-87
Number of pages8
JournalAstroparticle Physics
Volume97
DOIs
StatePublished - Jan 1 2018

Fingerprint

xenon
rare gases
weakly interacting massive particles
krypton
hypothetical particles
liquids
cold traps
research facilities
charcoal
purification
radioactive isotopes
grade
mass spectroscopy
isotopes
impurities
adsorption
decay
gases

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics

Cite this

Akerib, D. S., Araújo, H. M., Bai, X., Bailey, A. J., Balajthy, J., Beltrame, P., ... Zhang, C. (2018). Chromatographic separation of radioactive noble gases from xenon. Astroparticle Physics, 97, 80-87. https://doi.org/10.1016/j.astropartphys.2017.10.014
Akerib, D. S. ; Araújo, H. M. ; Bai, X. ; Bailey, A. J. ; Balajthy, J. ; Beltrame, P. ; Bernard, E. P. ; Bernstein, A. ; Biesiadzinski, T. P. ; Boulton, E. M. ; Bramante, R. ; Cahn, S. B. ; Carmona Benitez, Maria Del Carmen ; Chan, C. ; Chiller, A. A. ; Chiller, C. ; Coffey, T. ; Currie, A. ; Cutter, J. E. ; Davison, T. J.R. ; Dobi, A. ; Dobson, J. E.Y. ; Druszkiewicz, E. ; Edwards, B. N. ; Faham, C. H. ; Fiorucci, S. ; Gaitskell, R. J. ; Gehman, V. M. ; Ghag, C. ; Gibson, K. R. ; Gilchriese, M. G.D. ; Hall, C. R. ; Hanhardt, M. ; Haselschwardt, S. J. ; Hertel, S. A. ; Hogan, D. P. ; Horn, M. ; Huang, D. Q. ; Ignarra, C. M. ; Ihm, M. ; Jacobsen, R. G. ; Ji, W. ; Kamdin, K. ; Kazkaz, K. ; Khaitan, D. ; Knoche, R. ; Larsen, N. A. ; Lee, C. ; Lenardo, B. G. ; Lesko, K. T. ; Lindote, A. ; Lopes, M. I. ; Manalaysay, A. ; Mannino, R. L. ; Marzioni, M. F. ; McKinsey, D. N. ; Mei, D. M. ; Mock, J. ; Moongweluwan, M. ; Morad, J. A. ; Murphy, A. St J. ; Nehrkorn, C. ; Nelson, H. N. ; Neves, F. ; O'Sullivan, K. ; Oliver-Mallory, K. C. ; Palladino, K. J. ; Pease, E. K. ; Pech, K. ; Phelps, P. ; Reichhart, L. ; Rhyne, C. ; Shaw, S. ; Shutt, T. A. ; Silva, C. ; Solovov, V. N. ; Sorensen, P. ; Stephenson, S. ; Sumner, T. J. ; Szydagis, M. ; Taylor, D. J. ; Taylor, W. ; Tennyson, B. P. ; Terman, P. A. ; Tiedt, D. R. ; To, W. H. ; Tripathi, M. ; Tvrznikova, L. ; Uvarov, S. ; Verbus, J. R. ; Webb, R. C. ; White, J. T. ; Whitis, T. J. ; Witherell, M. S. ; Wolfs, F. L.H. ; Yazdani, K. ; Young, S. K. ; Zhang, C. / Chromatographic separation of radioactive noble gases from xenon. In: Astroparticle Physics. 2018 ; Vol. 97. pp. 80-87.
@article{57d5c9b4f9994b4382ba5488ade452cc,
title = "Chromatographic separation of radioactive noble gases from xenon",
abstract = "The Large Underground Xenon (LUX) experiment operates at the Sanford Underground Research Facility to detect nuclear recoils from the hypothetical Weakly Interacting Massive Particles (WIMPs) on a liquid xenon target. Liquid xenon typically contains trace amounts of the noble radioactive isotopes 85Kr and 39Ar that are not removed by the in situ gas purification system. The decays of these isotopes at concentrations typical of research-grade xenon would be a dominant background for a WIMP search experiment. To remove these impurities from the liquid xenon, a chromatographic separation system based on adsorption on activated charcoal was built. 400 kg of xenon was processed, reducing the average concentration of krypton from 130 ppb to 3.5 ppt as measured by a cold-trap assisted mass spectroscopy system. A 50 kg batch spiked to 0.001 g/g of krypton was processed twice and reduced to an upper limit of 0.2 ppt.",
author = "Akerib, {D. S.} and Ara{\'u}jo, {H. M.} and X. Bai and Bailey, {A. J.} and J. Balajthy and P. Beltrame and Bernard, {E. P.} and A. Bernstein and Biesiadzinski, {T. P.} and Boulton, {E. M.} and R. Bramante and Cahn, {S. B.} and {Carmona Benitez}, {Maria Del Carmen} and C. Chan and Chiller, {A. A.} and C. Chiller and T. Coffey and A. Currie and Cutter, {J. E.} and Davison, {T. J.R.} and A. Dobi and Dobson, {J. E.Y.} and E. Druszkiewicz and Edwards, {B. N.} and Faham, {C. H.} and S. Fiorucci and Gaitskell, {R. J.} and Gehman, {V. M.} and C. Ghag and Gibson, {K. R.} and Gilchriese, {M. G.D.} and Hall, {C. R.} and M. Hanhardt and Haselschwardt, {S. J.} and Hertel, {S. A.} and Hogan, {D. P.} and M. Horn and Huang, {D. Q.} and Ignarra, {C. M.} and M. Ihm and Jacobsen, {R. G.} and W. Ji and K. Kamdin and K. Kazkaz and D. Khaitan and R. Knoche and Larsen, {N. A.} and C. Lee and Lenardo, {B. G.} and Lesko, {K. T.} and A. Lindote and Lopes, {M. I.} and A. Manalaysay and Mannino, {R. L.} and Marzioni, {M. F.} and McKinsey, {D. N.} and Mei, {D. M.} and J. Mock and M. Moongweluwan and Morad, {J. A.} and Murphy, {A. St J.} and C. Nehrkorn and Nelson, {H. N.} and F. Neves and K. O'Sullivan and Oliver-Mallory, {K. C.} and Palladino, {K. J.} and Pease, {E. K.} and K. Pech and P. Phelps and L. Reichhart and C. Rhyne and S. Shaw and Shutt, {T. A.} and C. Silva and Solovov, {V. N.} and P. Sorensen and S. Stephenson and Sumner, {T. J.} and M. Szydagis and Taylor, {D. J.} and W. Taylor and Tennyson, {B. P.} and Terman, {P. A.} and Tiedt, {D. R.} and To, {W. H.} and M. Tripathi and L. Tvrznikova and S. Uvarov and Verbus, {J. R.} and Webb, {R. C.} and White, {J. T.} and Whitis, {T. J.} and Witherell, {M. S.} and Wolfs, {F. L.H.} and K. Yazdani and Young, {S. K.} and C. Zhang",
year = "2018",
month = "1",
day = "1",
doi = "10.1016/j.astropartphys.2017.10.014",
language = "English (US)",
volume = "97",
pages = "80--87",
journal = "Astroparticle Physics",
issn = "0927-6505",
publisher = "Elsevier",

}

Akerib, DS, Araújo, HM, Bai, X, Bailey, AJ, Balajthy, J, Beltrame, P, Bernard, EP, Bernstein, A, Biesiadzinski, TP, Boulton, EM, Bramante, R, Cahn, SB, Carmona Benitez, MDC, Chan, C, Chiller, AA, Chiller, C, Coffey, T, Currie, A, Cutter, JE, Davison, TJR, Dobi, A, Dobson, JEY, Druszkiewicz, E, Edwards, BN, Faham, CH, Fiorucci, S, Gaitskell, RJ, Gehman, VM, Ghag, C, Gibson, KR, Gilchriese, MGD, Hall, CR, Hanhardt, M, Haselschwardt, SJ, Hertel, SA, Hogan, DP, Horn, M, Huang, DQ, Ignarra, CM, Ihm, M, Jacobsen, RG, Ji, W, Kamdin, K, Kazkaz, K, Khaitan, D, Knoche, R, Larsen, NA, Lee, C, Lenardo, BG, Lesko, KT, Lindote, A, Lopes, MI, Manalaysay, A, Mannino, RL, Marzioni, MF, McKinsey, DN, Mei, DM, Mock, J, Moongweluwan, M, Morad, JA, Murphy, ASJ, Nehrkorn, C, Nelson, HN, Neves, F, O'Sullivan, K, Oliver-Mallory, KC, Palladino, KJ, Pease, EK, Pech, K, Phelps, P, Reichhart, L, Rhyne, C, Shaw, S, Shutt, TA, Silva, C, Solovov, VN, Sorensen, P, Stephenson, S, Sumner, TJ, Szydagis, M, Taylor, DJ, Taylor, W, Tennyson, BP, Terman, PA, Tiedt, DR, To, WH, Tripathi, M, Tvrznikova, L, Uvarov, S, Verbus, JR, Webb, RC, White, JT, Whitis, TJ, Witherell, MS, Wolfs, FLH, Yazdani, K, Young, SK & Zhang, C 2018, 'Chromatographic separation of radioactive noble gases from xenon', Astroparticle Physics, vol. 97, pp. 80-87. https://doi.org/10.1016/j.astropartphys.2017.10.014

Chromatographic separation of radioactive noble gases from xenon. / Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bramante, R.; Cahn, S. B.; Carmona Benitez, Maria Del Carmen; Chan, C.; Chiller, A. A.; Chiller, C.; Coffey, T.; Currie, A.; Cutter, J. E.; Davison, T. J.R.; Dobi, A.; Dobson, J. E.Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G.D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D. M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Pech, K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L.H.; Yazdani, K.; Young, S. K.; Zhang, C.

In: Astroparticle Physics, Vol. 97, 01.01.2018, p. 80-87.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Chromatographic separation of radioactive noble gases from xenon

AU - Akerib, D. S.

AU - Araújo, H. M.

AU - Bai, X.

AU - Bailey, A. J.

AU - Balajthy, J.

AU - Beltrame, P.

AU - Bernard, E. P.

AU - Bernstein, A.

AU - Biesiadzinski, T. P.

AU - Boulton, E. M.

AU - Bramante, R.

AU - Cahn, S. B.

AU - Carmona Benitez, Maria Del Carmen

AU - Chan, C.

AU - Chiller, A. A.

AU - Chiller, C.

AU - Coffey, T.

AU - Currie, A.

AU - Cutter, J. E.

AU - Davison, T. J.R.

AU - Dobi, A.

AU - Dobson, J. E.Y.

AU - Druszkiewicz, E.

AU - Edwards, B. N.

AU - Faham, C. H.

AU - Fiorucci, S.

AU - Gaitskell, R. J.

AU - Gehman, V. M.

AU - Ghag, C.

AU - Gibson, K. R.

AU - Gilchriese, M. G.D.

AU - Hall, C. R.

AU - Hanhardt, M.

AU - Haselschwardt, S. J.

AU - Hertel, S. A.

AU - Hogan, D. P.

AU - Horn, M.

AU - Huang, D. Q.

AU - Ignarra, C. M.

AU - Ihm, M.

AU - Jacobsen, R. G.

AU - Ji, W.

AU - Kamdin, K.

AU - Kazkaz, K.

AU - Khaitan, D.

AU - Knoche, R.

AU - Larsen, N. A.

AU - Lee, C.

AU - Lenardo, B. G.

AU - Lesko, K. T.

AU - Lindote, A.

AU - Lopes, M. I.

AU - Manalaysay, A.

AU - Mannino, R. L.

AU - Marzioni, M. F.

AU - McKinsey, D. N.

AU - Mei, D. M.

AU - Mock, J.

AU - Moongweluwan, M.

AU - Morad, J. A.

AU - Murphy, A. St J.

AU - Nehrkorn, C.

AU - Nelson, H. N.

AU - Neves, F.

AU - O'Sullivan, K.

AU - Oliver-Mallory, K. C.

AU - Palladino, K. J.

AU - Pease, E. K.

AU - Pech, K.

AU - Phelps, P.

AU - Reichhart, L.

AU - Rhyne, C.

AU - Shaw, S.

AU - Shutt, T. A.

AU - Silva, C.

AU - Solovov, V. N.

AU - Sorensen, P.

AU - Stephenson, S.

AU - Sumner, T. J.

AU - Szydagis, M.

AU - Taylor, D. J.

AU - Taylor, W.

AU - Tennyson, B. P.

AU - Terman, P. A.

AU - Tiedt, D. R.

AU - To, W. H.

AU - Tripathi, M.

AU - Tvrznikova, L.

AU - Uvarov, S.

AU - Verbus, J. R.

AU - Webb, R. C.

AU - White, J. T.

AU - Whitis, T. J.

AU - Witherell, M. S.

AU - Wolfs, F. L.H.

AU - Yazdani, K.

AU - Young, S. K.

AU - Zhang, C.

PY - 2018/1/1

Y1 - 2018/1/1

N2 - The Large Underground Xenon (LUX) experiment operates at the Sanford Underground Research Facility to detect nuclear recoils from the hypothetical Weakly Interacting Massive Particles (WIMPs) on a liquid xenon target. Liquid xenon typically contains trace amounts of the noble radioactive isotopes 85Kr and 39Ar that are not removed by the in situ gas purification system. The decays of these isotopes at concentrations typical of research-grade xenon would be a dominant background for a WIMP search experiment. To remove these impurities from the liquid xenon, a chromatographic separation system based on adsorption on activated charcoal was built. 400 kg of xenon was processed, reducing the average concentration of krypton from 130 ppb to 3.5 ppt as measured by a cold-trap assisted mass spectroscopy system. A 50 kg batch spiked to 0.001 g/g of krypton was processed twice and reduced to an upper limit of 0.2 ppt.

AB - The Large Underground Xenon (LUX) experiment operates at the Sanford Underground Research Facility to detect nuclear recoils from the hypothetical Weakly Interacting Massive Particles (WIMPs) on a liquid xenon target. Liquid xenon typically contains trace amounts of the noble radioactive isotopes 85Kr and 39Ar that are not removed by the in situ gas purification system. The decays of these isotopes at concentrations typical of research-grade xenon would be a dominant background for a WIMP search experiment. To remove these impurities from the liquid xenon, a chromatographic separation system based on adsorption on activated charcoal was built. 400 kg of xenon was processed, reducing the average concentration of krypton from 130 ppb to 3.5 ppt as measured by a cold-trap assisted mass spectroscopy system. A 50 kg batch spiked to 0.001 g/g of krypton was processed twice and reduced to an upper limit of 0.2 ppt.

UR - http://www.scopus.com/inward/record.url?scp=85034077852&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85034077852&partnerID=8YFLogxK

U2 - 10.1016/j.astropartphys.2017.10.014

DO - 10.1016/j.astropartphys.2017.10.014

M3 - Article

VL - 97

SP - 80

EP - 87

JO - Astroparticle Physics

JF - Astroparticle Physics

SN - 0927-6505

ER -

Akerib DS, Araújo HM, Bai X, Bailey AJ, Balajthy J, Beltrame P et al. Chromatographic separation of radioactive noble gases from xenon. Astroparticle Physics. 2018 Jan 1;97:80-87. https://doi.org/10.1016/j.astropartphys.2017.10.014