Chronic statin therapy is associated with enhanced cutaneous vascular responsiveness to sympathetic outflow during passive heat stress

Jody L. Greaney, Anna E. Stanhewicz, W. Larry Kenney

Research output: Contribution to journalArticle

Abstract

Key points: Impairments in both central sympathetic and peripheral microvascular function contribute to blunted reflex cutaneous vasodilatation during heat stress in healthy older adults. Hypercholesterolaemia is associated with decrements in neurovascular function; however, little is known about the impact of hypercholesterolaemia on the integrated responses to heat stress. Further, whether chronic statin therapy alters skin sympathetic outflow or its relation to cutaneous vascular conductance during heat stress is unknown. We demonstrate that reflex cutaneous vasodilatation is impaired in older hypercholesterolaemic adults but not in formerly hypercholesterolaemic adults currently treated with a statin compared to age-matched controls. Additionally, chronic statin treatment-induced improvements in reflex vasodilatation are mediated, in part, by increases in end-organ responsiveness to efferent sympathetic outflow during whole-body heating. These data add to the growing body of literature substantiating the beneficial pleiotropic neurovascular effects of chronic statin treatment and provide further support for the use of statins to confer additional cardioprotective benefits in older adults. Abstract: Attenuated reflex cutaneous vasodilatation in healthy human ageing is mediated by alterations in both central (sympathetic outflow) and peripheral (microvascular endothelial) function. Hypercholesterolaemia is associated with further impairments in neurovascular function. HMG-CoA reductase inhibitors (statins) improve cutaneous endothelium-dependent dilatation; however, whether statin therapy alters skin sympathetic nervous system activity (SSNA) or its relation to cutaneous vascular conductance (CVC) during passive heat stress is unknown. We hypothesized that (1) hypercholesterolaemic older adults would demonstrate blunted increases in both SSNA and CVC during passive heating and (2) chronic statin treatment would improve the response range and sensitivity of the SSNA:CVC relation. Reflex vasodilatation in response to a 1.0°C rise in oral temperature (Tor; water perfused suit) was induced in 13 healthy normocholesterolaemic adults (62 ± 2 years; LDL = 113 ± 7 mg/dl), 10 hypercholesterolaemic adults (60 ± 1 years; LDL = 183 ± 2 mg/dl), and 10 previously hypercholesterolaemic adults (64 ± 1 years; LDL = 102 ± 2 mg/dl) treated with lipophilic statin (10–40 mg daily). SSNA (peroneal microneurography) and red cell flux (laser-Doppler flowmetry) in the innervated dermatome (dorsum of foot) were continuously measured. Reflex vasodilatation was blunted in hypercholesterolaemic adults, but not in statin-treated adults, compared to normocholesterolaemic adults (at ∆Tor = 1.0°C: normal = 36 ± 1%CVCmax, high = 32 ± 1%CVCmax, statin = 38 ± 1%CVCmax; P < 0.01). ∆SSNA was not different (at ∆Tor = 1.0°C: normal: ∆ = 393 ± 96%, high: ∆ = 311 ± 120%, statin: ∆ = 256 ± 90%; P = 0.11). The slope of the SSNA:CVC relation was blunted in hypercholesterolaemic adults (0.02 ± 0.03%CVCmax/%baseline) compared to both normocholesterolaemic (0.09 ± 0.02%CVCmax/%baseline; P = 0.024) and statin-treated (0.12 ± 0.05%CVCmax/%baseline; P = 0.03) adults. Chronic statin treatment improves reflex cutaneous vasodilatation in formerly hypercholesterolaemic older adults by increasing end-organ responsiveness to sympathetic outflow during passive heat stress.

Original languageEnglish (US)
Pages (from-to)4743-4755
Number of pages13
JournalJournal of Physiology
Volume597
Issue number18
DOIs
StatePublished - Sep 1 2019

Fingerprint

Hydroxymethylglutaryl-CoA Reductase Inhibitors
Blood Vessels
Hot Temperature
Skin
Vasodilation
Sympathetic Nervous System
Reflex
Therapeutics
Hypercholesterolemia
Heating
Heat-Shock Response
Laser-Doppler Flowmetry

All Science Journal Classification (ASJC) codes

  • Physiology

Cite this

@article{8096e7ebd6b14156a22e3185b141b73e,
title = "Chronic statin therapy is associated with enhanced cutaneous vascular responsiveness to sympathetic outflow during passive heat stress",
abstract = "Key points: Impairments in both central sympathetic and peripheral microvascular function contribute to blunted reflex cutaneous vasodilatation during heat stress in healthy older adults. Hypercholesterolaemia is associated with decrements in neurovascular function; however, little is known about the impact of hypercholesterolaemia on the integrated responses to heat stress. Further, whether chronic statin therapy alters skin sympathetic outflow or its relation to cutaneous vascular conductance during heat stress is unknown. We demonstrate that reflex cutaneous vasodilatation is impaired in older hypercholesterolaemic adults but not in formerly hypercholesterolaemic adults currently treated with a statin compared to age-matched controls. Additionally, chronic statin treatment-induced improvements in reflex vasodilatation are mediated, in part, by increases in end-organ responsiveness to efferent sympathetic outflow during whole-body heating. These data add to the growing body of literature substantiating the beneficial pleiotropic neurovascular effects of chronic statin treatment and provide further support for the use of statins to confer additional cardioprotective benefits in older adults. Abstract: Attenuated reflex cutaneous vasodilatation in healthy human ageing is mediated by alterations in both central (sympathetic outflow) and peripheral (microvascular endothelial) function. Hypercholesterolaemia is associated with further impairments in neurovascular function. HMG-CoA reductase inhibitors (statins) improve cutaneous endothelium-dependent dilatation; however, whether statin therapy alters skin sympathetic nervous system activity (SSNA) or its relation to cutaneous vascular conductance (CVC) during passive heat stress is unknown. We hypothesized that (1) hypercholesterolaemic older adults would demonstrate blunted increases in both SSNA and CVC during passive heating and (2) chronic statin treatment would improve the response range and sensitivity of the SSNA:CVC relation. Reflex vasodilatation in response to a 1.0°C rise in oral temperature (Tor; water perfused suit) was induced in 13 healthy normocholesterolaemic adults (62 ± 2 years; LDL = 113 ± 7 mg/dl), 10 hypercholesterolaemic adults (60 ± 1 years; LDL = 183 ± 2 mg/dl), and 10 previously hypercholesterolaemic adults (64 ± 1 years; LDL = 102 ± 2 mg/dl) treated with lipophilic statin (10–40 mg daily). SSNA (peroneal microneurography) and red cell flux (laser-Doppler flowmetry) in the innervated dermatome (dorsum of foot) were continuously measured. Reflex vasodilatation was blunted in hypercholesterolaemic adults, but not in statin-treated adults, compared to normocholesterolaemic adults (at ∆Tor = 1.0°C: normal = 36 ± 1{\%}CVCmax, high = 32 ± 1{\%}CVCmax, statin = 38 ± 1{\%}CVCmax; P < 0.01). ∆SSNA was not different (at ∆Tor = 1.0°C: normal: ∆ = 393 ± 96{\%}, high: ∆ = 311 ± 120{\%}, statin: ∆ = 256 ± 90{\%}; P = 0.11). The slope of the SSNA:CVC relation was blunted in hypercholesterolaemic adults (0.02 ± 0.03{\%}CVCmax/{\%}baseline) compared to both normocholesterolaemic (0.09 ± 0.02{\%}CVCmax/{\%}baseline; P = 0.024) and statin-treated (0.12 ± 0.05{\%}CVCmax/{\%}baseline; P = 0.03) adults. Chronic statin treatment improves reflex cutaneous vasodilatation in formerly hypercholesterolaemic older adults by increasing end-organ responsiveness to sympathetic outflow during passive heat stress.",
author = "Greaney, {Jody L.} and Stanhewicz, {Anna E.} and Kenney, {W. Larry}",
year = "2019",
month = "9",
day = "1",
doi = "10.1113/JP278237",
language = "English (US)",
volume = "597",
pages = "4743--4755",
journal = "Journal of Physiology",
issn = "0022-3751",
publisher = "Wiley-Blackwell",
number = "18",

}

Chronic statin therapy is associated with enhanced cutaneous vascular responsiveness to sympathetic outflow during passive heat stress. / Greaney, Jody L.; Stanhewicz, Anna E.; Kenney, W. Larry.

In: Journal of Physiology, Vol. 597, No. 18, 01.09.2019, p. 4743-4755.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Chronic statin therapy is associated with enhanced cutaneous vascular responsiveness to sympathetic outflow during passive heat stress

AU - Greaney, Jody L.

AU - Stanhewicz, Anna E.

AU - Kenney, W. Larry

PY - 2019/9/1

Y1 - 2019/9/1

N2 - Key points: Impairments in both central sympathetic and peripheral microvascular function contribute to blunted reflex cutaneous vasodilatation during heat stress in healthy older adults. Hypercholesterolaemia is associated with decrements in neurovascular function; however, little is known about the impact of hypercholesterolaemia on the integrated responses to heat stress. Further, whether chronic statin therapy alters skin sympathetic outflow or its relation to cutaneous vascular conductance during heat stress is unknown. We demonstrate that reflex cutaneous vasodilatation is impaired in older hypercholesterolaemic adults but not in formerly hypercholesterolaemic adults currently treated with a statin compared to age-matched controls. Additionally, chronic statin treatment-induced improvements in reflex vasodilatation are mediated, in part, by increases in end-organ responsiveness to efferent sympathetic outflow during whole-body heating. These data add to the growing body of literature substantiating the beneficial pleiotropic neurovascular effects of chronic statin treatment and provide further support for the use of statins to confer additional cardioprotective benefits in older adults. Abstract: Attenuated reflex cutaneous vasodilatation in healthy human ageing is mediated by alterations in both central (sympathetic outflow) and peripheral (microvascular endothelial) function. Hypercholesterolaemia is associated with further impairments in neurovascular function. HMG-CoA reductase inhibitors (statins) improve cutaneous endothelium-dependent dilatation; however, whether statin therapy alters skin sympathetic nervous system activity (SSNA) or its relation to cutaneous vascular conductance (CVC) during passive heat stress is unknown. We hypothesized that (1) hypercholesterolaemic older adults would demonstrate blunted increases in both SSNA and CVC during passive heating and (2) chronic statin treatment would improve the response range and sensitivity of the SSNA:CVC relation. Reflex vasodilatation in response to a 1.0°C rise in oral temperature (Tor; water perfused suit) was induced in 13 healthy normocholesterolaemic adults (62 ± 2 years; LDL = 113 ± 7 mg/dl), 10 hypercholesterolaemic adults (60 ± 1 years; LDL = 183 ± 2 mg/dl), and 10 previously hypercholesterolaemic adults (64 ± 1 years; LDL = 102 ± 2 mg/dl) treated with lipophilic statin (10–40 mg daily). SSNA (peroneal microneurography) and red cell flux (laser-Doppler flowmetry) in the innervated dermatome (dorsum of foot) were continuously measured. Reflex vasodilatation was blunted in hypercholesterolaemic adults, but not in statin-treated adults, compared to normocholesterolaemic adults (at ∆Tor = 1.0°C: normal = 36 ± 1%CVCmax, high = 32 ± 1%CVCmax, statin = 38 ± 1%CVCmax; P < 0.01). ∆SSNA was not different (at ∆Tor = 1.0°C: normal: ∆ = 393 ± 96%, high: ∆ = 311 ± 120%, statin: ∆ = 256 ± 90%; P = 0.11). The slope of the SSNA:CVC relation was blunted in hypercholesterolaemic adults (0.02 ± 0.03%CVCmax/%baseline) compared to both normocholesterolaemic (0.09 ± 0.02%CVCmax/%baseline; P = 0.024) and statin-treated (0.12 ± 0.05%CVCmax/%baseline; P = 0.03) adults. Chronic statin treatment improves reflex cutaneous vasodilatation in formerly hypercholesterolaemic older adults by increasing end-organ responsiveness to sympathetic outflow during passive heat stress.

AB - Key points: Impairments in both central sympathetic and peripheral microvascular function contribute to blunted reflex cutaneous vasodilatation during heat stress in healthy older adults. Hypercholesterolaemia is associated with decrements in neurovascular function; however, little is known about the impact of hypercholesterolaemia on the integrated responses to heat stress. Further, whether chronic statin therapy alters skin sympathetic outflow or its relation to cutaneous vascular conductance during heat stress is unknown. We demonstrate that reflex cutaneous vasodilatation is impaired in older hypercholesterolaemic adults but not in formerly hypercholesterolaemic adults currently treated with a statin compared to age-matched controls. Additionally, chronic statin treatment-induced improvements in reflex vasodilatation are mediated, in part, by increases in end-organ responsiveness to efferent sympathetic outflow during whole-body heating. These data add to the growing body of literature substantiating the beneficial pleiotropic neurovascular effects of chronic statin treatment and provide further support for the use of statins to confer additional cardioprotective benefits in older adults. Abstract: Attenuated reflex cutaneous vasodilatation in healthy human ageing is mediated by alterations in both central (sympathetic outflow) and peripheral (microvascular endothelial) function. Hypercholesterolaemia is associated with further impairments in neurovascular function. HMG-CoA reductase inhibitors (statins) improve cutaneous endothelium-dependent dilatation; however, whether statin therapy alters skin sympathetic nervous system activity (SSNA) or its relation to cutaneous vascular conductance (CVC) during passive heat stress is unknown. We hypothesized that (1) hypercholesterolaemic older adults would demonstrate blunted increases in both SSNA and CVC during passive heating and (2) chronic statin treatment would improve the response range and sensitivity of the SSNA:CVC relation. Reflex vasodilatation in response to a 1.0°C rise in oral temperature (Tor; water perfused suit) was induced in 13 healthy normocholesterolaemic adults (62 ± 2 years; LDL = 113 ± 7 mg/dl), 10 hypercholesterolaemic adults (60 ± 1 years; LDL = 183 ± 2 mg/dl), and 10 previously hypercholesterolaemic adults (64 ± 1 years; LDL = 102 ± 2 mg/dl) treated with lipophilic statin (10–40 mg daily). SSNA (peroneal microneurography) and red cell flux (laser-Doppler flowmetry) in the innervated dermatome (dorsum of foot) were continuously measured. Reflex vasodilatation was blunted in hypercholesterolaemic adults, but not in statin-treated adults, compared to normocholesterolaemic adults (at ∆Tor = 1.0°C: normal = 36 ± 1%CVCmax, high = 32 ± 1%CVCmax, statin = 38 ± 1%CVCmax; P < 0.01). ∆SSNA was not different (at ∆Tor = 1.0°C: normal: ∆ = 393 ± 96%, high: ∆ = 311 ± 120%, statin: ∆ = 256 ± 90%; P = 0.11). The slope of the SSNA:CVC relation was blunted in hypercholesterolaemic adults (0.02 ± 0.03%CVCmax/%baseline) compared to both normocholesterolaemic (0.09 ± 0.02%CVCmax/%baseline; P = 0.024) and statin-treated (0.12 ± 0.05%CVCmax/%baseline; P = 0.03) adults. Chronic statin treatment improves reflex cutaneous vasodilatation in formerly hypercholesterolaemic older adults by increasing end-organ responsiveness to sympathetic outflow during passive heat stress.

UR - http://www.scopus.com/inward/record.url?scp=85071141692&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85071141692&partnerID=8YFLogxK

U2 - 10.1113/JP278237

DO - 10.1113/JP278237

M3 - Article

C2 - 31397898

AN - SCOPUS:85071141692

VL - 597

SP - 4743

EP - 4755

JO - Journal of Physiology

JF - Journal of Physiology

SN - 0022-3751

IS - 18

ER -