Circumcenter of Mass and Generalized Euler Line

Serge Tabachnikov, Emmanuel Tsukerman

Research output: Contribution to journalArticle

3 Scopus citations

Abstract

We define and study a variant of the center of mass of a polygon and, more generally, of a simplicial polytope which we call the Circumcenter of Mass (CCM). The CCM is an affine combination of the circumcenters of the simplices in a triangulation of a polytope, weighted by their volumes. For an inscribed polytope, CCM coincides with the circumcenter. Our motivation comes from the study of completely integrable discrete dynamical systems, where the CCM is an invariant of the discrete bicycle (Darboux) transformation and of recuttings of polygons. We show that the CCM satisfies an analog of Archimedes' Lemma, a familiar property of the center of mass. We define and study a generalized Euler line associated to any simplicial polytope, extending the previously studied Euler line associated to the quadrilateral. We show that the generalized Euler line for polygons consists of all centers satisfying natural continuity and homogeneity assumptions and Archimedes' Lemma. Finally, we show that CCM can also be defined in the spherical and hyperbolic settings.

Original languageEnglish (US)
Pages (from-to)815-836
Number of pages22
JournalDiscrete and Computational Geometry
Volume51
Issue number4
DOIs
StatePublished - Jun 2014

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Geometry and Topology
  • Discrete Mathematics and Combinatorics
  • Computational Theory and Mathematics

Fingerprint Dive into the research topics of 'Circumcenter of Mass and Generalized Euler Line'. Together they form a unique fingerprint.

  • Cite this