Click chemistry improved wet adhesion strength of mussel-inspired citrate-based antimicrobial bioadhesives

Jinshan Guo, Gloria B. Kim, Dingying Shan, Jimin P. Kim, Jianqing Hu, Wei Wang, Fawzi G. Hamad, Guoying Qian, Elias B. Rizk, Jian Yang

Research output: Contribution to journalArticle

41 Scopus citations

Abstract

For the first time, a convenient copper-catalyzed azide-alkyne cycloaddition (CuAAC, click chemistry) was successfully introduced into injectable citrate-based mussel-inspired bioadhesives (iCMBAs, iCs) to improve both cohesive and wet adhesive strengths and elongate the degradation time, providing numerous advantages in surgical applications. The major challenge in developing such adhesives was the mutual inhibition effect between the oxidant used for crosslinking catechol groups and the Cu(II) reductant used for CuAAC, which was successfully minimized by adding a biocompatible buffering agent typically used in cell culture, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), as a copper chelating agent. Among the investigated formulations, the highest adhesion strength achieved (223.11 ± 15.94 kPa) was around 13 times higher than that of a commercially available fibrin glue (15.4 ± 2.8 kPa). In addition, dual-crosslinked (i.e. click crosslinking and mussel-inspired crosslinking) iCMBAs still preserved considerable antibacterial and antifungal capabilities that are beneficial for the bioadhesives used as hemostatic adhesives or sealants for wound management.

Original languageEnglish (US)
Pages (from-to)275-286
Number of pages12
JournalBiomaterials
Volume112
DOIs
StatePublished - Jan 1 2017

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Ceramics and Composites
  • Biophysics
  • Biomaterials
  • Mechanics of Materials

Fingerprint Dive into the research topics of 'Click chemistry improved wet adhesion strength of mussel-inspired citrate-based antimicrobial bioadhesives'. Together they form a unique fingerprint.

  • Cite this