Climate change will both exacerbate and attenuate urbanization impacts on streamflow regimes in southern Willamette Valley, Oregon

Hong Wu, Bart R. Johnson

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


Interactions between climate change and urbanization may affect stream ecosystems in unexpected ways. With an integrated modelling framework, we assessed the combined hydrological impacts of climate change and urbanization under historical and future climate regimes across varied development scenarios in three watersheds in the Willamette Valley, Oregon. First, through an agent-based land use change model Envision, we created four development scenarios that consisted of 2 × 2 combinations of regional growth (compact population growth in urban cores vs. dispersed growth into rural areas) and stormwater management scenarios (with vs. without integrated stormwater management, ISM). ISM was defined as the integration of strategic organization of land uses with site-scale stormwater best management practices. Next, two future climate regimes were developed by statistically downscaling projections from two general circulation models (CanESM2 and CNRM-CM5) that performed well in replicating historical climate. The hydrological assessment of these scenarios was then conducted with the Soil and Water Assessment Tool. Using 10 ecologically significant flow metrics, we evaluated each scenario based on the magnitude of change in each metric and the degree to which such changes could be mitigated. Climate change alone led to a drying trend in flow regimes under both future climates. Combined with urbanization, it magnified changes in six of 10 metrics but attenuated impacts for three other measures of flashiness in at least one basin. The combination of compact growth and ISM effectively mitigated alterations for seven (out of nine) metrics sensitive to the combined impacts in at least one basin, with ISM being more effective than compact growth. The modelling framework teased out both nuanced differences and generalizable trends in hydrological impacts of urbanization and climate change and offers key methodological innovations towards an integrated framework capable of linking landscape planning mechanisms with the goal of sustaining stream ecosystem health.

Original languageEnglish (US)
Pages (from-to)818-832
Number of pages15
JournalRiver Research and Applications
Issue number7
StatePublished - Sep 1 2019

All Science Journal Classification (ASJC) codes

  • Environmental Chemistry
  • Water Science and Technology
  • Environmental Science(all)


Dive into the research topics of 'Climate change will both exacerbate and attenuate urbanization impacts on streamflow regimes in southern Willamette Valley, Oregon'. Together they form a unique fingerprint.

Cite this