Climate, vegetation, and weathering across space and time in Lake Tanganyika (tropical eastern Africa)

Sarah J. Ivory, Michael M. McGlue, Cara Peterman, Patrick Baldwin, Joseph Lucas, Andrew Cohen, James Russell, Justina Saroni, Emma Msaky, Ishmael Kimirei, Michael Soreghan

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Climate and vegetation influence weathering rates and processes; however, evaluating the effects of each and feedbacks between systems, has yet to be accomplished for many types of landscapes. A detailed understanding of how these processes interact to shape landscapes is particularly crucial for reconciling future scenarios of changing climate, where profound alterations to both the biosphere and geosphere are anticipated. In the tropics, ecosystem services, such as soil and water quality, are linked to both vegetation and weathering processes that form a strong control on natural resources that are the foundation of many communities’ daily subsistence. This understanding is further complicated by intensifying land-use within tropical watersheds, which decouples vegetation change from climate; it is yet unclear what the direct effects of vegetation change may be on erosion and weathering when operating independent of climate. Long term observational records tracking changes to the critical zone do not exist in tropical Africa, however, sedimentary paleo-records from lakes are often of sufficient length and resolution to record the impact of bioclimatic variability on surface processes. Here, we use a novel approach combining long (60ka) and intermediate-length (400yrs) lake sediment records along with historical repeat photography from Lake Tanganyika (Tanzania) to document changes and relationships among climate, vegetation, and weathering at multiple scales. These records illustrate that glacial-interglacial climate change did not significantly alter weathering intensity. Instead, we observe chemical and physical weathering responses only when the vegetation becomes more open beginning at the transition to the Holocene. Also, the largest change in chemical weathering intensity occurs only within the last ∼3ka. This is consistent with a major reorganization of vegetation and is directly attributable to Iron Age human activity, rather than climate. Furthermore, anthropogenic landscape alteration as early as ∼2.5ka, in addition to well-documented comparisons of historical land-use, suggest widespread responses of both chemical weathering intensity and enhanced soil erosion to human activity. This shows that changes in vegetation structure induced by anthropogenic activity, decoupled from climate change, generate a disproportionately large weathering response.

Original languageEnglish (US)
Article number100023
JournalQuaternary Science Advances
Volume3
DOIs
StatePublished - Apr 2021

All Science Journal Classification (ASJC) codes

  • Geology
  • Earth-Surface Processes
  • Earth and Planetary Sciences (miscellaneous)

Cite this