Cloning and structural characterization of ECTACC, a new member of the transforming acidic coiled coil (TACC) gene family: cDNA sequence and expression analysis in human microvascular endothelial cells

Jeffrey Pu, Chaoyang Li, Marilis Rodriguez, Debendranath Banerjee

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

Erythropoietin (Epo) transduces mitogenic and chemoattractant signals to human endothelial cells. Identifications of Epo-responsive genes are important for understanding the molecular nature of Epo signaling in endothelial cells. The effects of Epo on differential expression of various genes were examined in human microvascular endothelial cells (HMVEC) by differential display reverse transcriptase polymerase chain reaction (RT-PCR). In the current study we obtained from Epo-treated HMVEC a cDNA fragment with characteristics of the 3′ end of mRNA. Using the cDNA fragment, we then selectively isolated a full-length clone by screening an unamplified endothelial cell cDNA library followed by 5′ rapid amplification of cDNA ends by polymerase chain reaction (RACE-PCR). The nucleotide sequence of the longest cDNA revealed an open reading frame of 3311 nucleotides that encodes a protein consisting of ∼ 906 amino acids with a predicted MW of ∼ 100 kDa. The nucleotide sequence of the cDNA is nearly identical to that of transforming acidic coiled coil-containing (TACC2) and anti-zuai-1 (AZU-1) cDNA clones except at the 5′- and 3′-ends. Northern blot analysis showed an increase in endothelial-TACC-related mRNA levels in Epo-treated cells in comparison to that of the control cells. Endothelial-TACC-related mRNA was highly expressed in heart and skeletal muscle tissue. Placenta and brain tissue exhibited low levels of expression of endothelial-TACC-related gene. Southern blot analysis of genomic DNA from somatic cell hybrids showed that endothelial-TACC-related cDNA maps to chromosome 10. Immunofluorescence microscopy and the occurrence of several putative phosphorylation and SH3 binding sites on the deduced protein suggest that endothelial-TACC-related protein may be involved in Epo signaling cascades in endothelial cells.

Original languageEnglish (US)
Pages (from-to)129-137
Number of pages9
JournalCytokine
Volume13
Issue number3
DOIs
StatePublished - Feb 7 2001

Fingerprint

Cloning
Endothelial cells
Erythropoietin
Sequence Analysis
Organism Cloning
Endothelial Cells
Complementary DNA
Genes
Nucleotides
Polymerase chain reaction
Messenger RNA
Clone Cells
Tissue
Chromosomes, Human, Pair 10
Phosphorylation
Proteins
Hybrid Cells
RNA-Directed DNA Polymerase
Chemotactic Factors
Chromosomes

All Science Journal Classification (ASJC) codes

  • Immunology and Allergy
  • Immunology
  • Biochemistry
  • Hematology
  • Molecular Biology

Cite this

@article{a2631571cff44829a087eda4026a8975,
title = "Cloning and structural characterization of ECTACC, a new member of the transforming acidic coiled coil (TACC) gene family: cDNA sequence and expression analysis in human microvascular endothelial cells",
abstract = "Erythropoietin (Epo) transduces mitogenic and chemoattractant signals to human endothelial cells. Identifications of Epo-responsive genes are important for understanding the molecular nature of Epo signaling in endothelial cells. The effects of Epo on differential expression of various genes were examined in human microvascular endothelial cells (HMVEC) by differential display reverse transcriptase polymerase chain reaction (RT-PCR). In the current study we obtained from Epo-treated HMVEC a cDNA fragment with characteristics of the 3′ end of mRNA. Using the cDNA fragment, we then selectively isolated a full-length clone by screening an unamplified endothelial cell cDNA library followed by 5′ rapid amplification of cDNA ends by polymerase chain reaction (RACE-PCR). The nucleotide sequence of the longest cDNA revealed an open reading frame of 3311 nucleotides that encodes a protein consisting of ∼ 906 amino acids with a predicted MW of ∼ 100 kDa. The nucleotide sequence of the cDNA is nearly identical to that of transforming acidic coiled coil-containing (TACC2) and anti-zuai-1 (AZU-1) cDNA clones except at the 5′- and 3′-ends. Northern blot analysis showed an increase in endothelial-TACC-related mRNA levels in Epo-treated cells in comparison to that of the control cells. Endothelial-TACC-related mRNA was highly expressed in heart and skeletal muscle tissue. Placenta and brain tissue exhibited low levels of expression of endothelial-TACC-related gene. Southern blot analysis of genomic DNA from somatic cell hybrids showed that endothelial-TACC-related cDNA maps to chromosome 10. Immunofluorescence microscopy and the occurrence of several putative phosphorylation and SH3 binding sites on the deduced protein suggest that endothelial-TACC-related protein may be involved in Epo signaling cascades in endothelial cells.",
author = "Jeffrey Pu and Chaoyang Li and Marilis Rodriguez and Debendranath Banerjee",
year = "2001",
month = "2",
day = "7",
doi = "10.1006/cyto.2000.0812",
language = "English (US)",
volume = "13",
pages = "129--137",
journal = "Cytokine",
issn = "1043-4666",
publisher = "Academic Press Inc.",
number = "3",

}

Cloning and structural characterization of ECTACC, a new member of the transforming acidic coiled coil (TACC) gene family : cDNA sequence and expression analysis in human microvascular endothelial cells. / Pu, Jeffrey; Li, Chaoyang; Rodriguez, Marilis; Banerjee, Debendranath.

In: Cytokine, Vol. 13, No. 3, 07.02.2001, p. 129-137.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Cloning and structural characterization of ECTACC, a new member of the transforming acidic coiled coil (TACC) gene family

T2 - cDNA sequence and expression analysis in human microvascular endothelial cells

AU - Pu, Jeffrey

AU - Li, Chaoyang

AU - Rodriguez, Marilis

AU - Banerjee, Debendranath

PY - 2001/2/7

Y1 - 2001/2/7

N2 - Erythropoietin (Epo) transduces mitogenic and chemoattractant signals to human endothelial cells. Identifications of Epo-responsive genes are important for understanding the molecular nature of Epo signaling in endothelial cells. The effects of Epo on differential expression of various genes were examined in human microvascular endothelial cells (HMVEC) by differential display reverse transcriptase polymerase chain reaction (RT-PCR). In the current study we obtained from Epo-treated HMVEC a cDNA fragment with characteristics of the 3′ end of mRNA. Using the cDNA fragment, we then selectively isolated a full-length clone by screening an unamplified endothelial cell cDNA library followed by 5′ rapid amplification of cDNA ends by polymerase chain reaction (RACE-PCR). The nucleotide sequence of the longest cDNA revealed an open reading frame of 3311 nucleotides that encodes a protein consisting of ∼ 906 amino acids with a predicted MW of ∼ 100 kDa. The nucleotide sequence of the cDNA is nearly identical to that of transforming acidic coiled coil-containing (TACC2) and anti-zuai-1 (AZU-1) cDNA clones except at the 5′- and 3′-ends. Northern blot analysis showed an increase in endothelial-TACC-related mRNA levels in Epo-treated cells in comparison to that of the control cells. Endothelial-TACC-related mRNA was highly expressed in heart and skeletal muscle tissue. Placenta and brain tissue exhibited low levels of expression of endothelial-TACC-related gene. Southern blot analysis of genomic DNA from somatic cell hybrids showed that endothelial-TACC-related cDNA maps to chromosome 10. Immunofluorescence microscopy and the occurrence of several putative phosphorylation and SH3 binding sites on the deduced protein suggest that endothelial-TACC-related protein may be involved in Epo signaling cascades in endothelial cells.

AB - Erythropoietin (Epo) transduces mitogenic and chemoattractant signals to human endothelial cells. Identifications of Epo-responsive genes are important for understanding the molecular nature of Epo signaling in endothelial cells. The effects of Epo on differential expression of various genes were examined in human microvascular endothelial cells (HMVEC) by differential display reverse transcriptase polymerase chain reaction (RT-PCR). In the current study we obtained from Epo-treated HMVEC a cDNA fragment with characteristics of the 3′ end of mRNA. Using the cDNA fragment, we then selectively isolated a full-length clone by screening an unamplified endothelial cell cDNA library followed by 5′ rapid amplification of cDNA ends by polymerase chain reaction (RACE-PCR). The nucleotide sequence of the longest cDNA revealed an open reading frame of 3311 nucleotides that encodes a protein consisting of ∼ 906 amino acids with a predicted MW of ∼ 100 kDa. The nucleotide sequence of the cDNA is nearly identical to that of transforming acidic coiled coil-containing (TACC2) and anti-zuai-1 (AZU-1) cDNA clones except at the 5′- and 3′-ends. Northern blot analysis showed an increase in endothelial-TACC-related mRNA levels in Epo-treated cells in comparison to that of the control cells. Endothelial-TACC-related mRNA was highly expressed in heart and skeletal muscle tissue. Placenta and brain tissue exhibited low levels of expression of endothelial-TACC-related gene. Southern blot analysis of genomic DNA from somatic cell hybrids showed that endothelial-TACC-related cDNA maps to chromosome 10. Immunofluorescence microscopy and the occurrence of several putative phosphorylation and SH3 binding sites on the deduced protein suggest that endothelial-TACC-related protein may be involved in Epo signaling cascades in endothelial cells.

UR - http://www.scopus.com/inward/record.url?scp=0035819470&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035819470&partnerID=8YFLogxK

U2 - 10.1006/cyto.2000.0812

DO - 10.1006/cyto.2000.0812

M3 - Article

C2 - 11161455

AN - SCOPUS:0035819470

VL - 13

SP - 129

EP - 137

JO - Cytokine

JF - Cytokine

SN - 1043-4666

IS - 3

ER -