TY - JOUR
T1 - Clusters, surfaces, and catalysis
AU - Somorjai, Gabor A.
AU - Contreras, Anthony M.
AU - Montano, Max
AU - Rioux, Robert M.
PY - 2006/7/11
Y1 - 2006/7/11
N2 - The surface science of heterogeneous metal catalysis uses model systems ranging from single crystals to monodispersed nanoparticles in the 1-10 nm range. Molecular studies reveal that bond activation (C-H, H-H, C-C, C=O) occurs at 300 K or below as the active metal sites simultaneously restructure. The strongly adsorbed molecules must be mobile to free up these sites for continued turnover of reaction. Oxide-metal interfaces are also active for catalytic turnover. Examples using C-H and C=O activation are described to demonstrate these properties. Future directions include synthesis, characterization, and reaction studies with 2D and 3D monodispersed metal nanoclusters to obtain 100% selectivity in multipath reactions. Investigations of the unique structural, dynamic, and electronic properties of nanoparticles are likely to have major impact in surface technologies. The fields of heterogeneous, enzyme, and homogeneous catalysis are likely to merge for the benefit of all three.
AB - The surface science of heterogeneous metal catalysis uses model systems ranging from single crystals to monodispersed nanoparticles in the 1-10 nm range. Molecular studies reveal that bond activation (C-H, H-H, C-C, C=O) occurs at 300 K or below as the active metal sites simultaneously restructure. The strongly adsorbed molecules must be mobile to free up these sites for continued turnover of reaction. Oxide-metal interfaces are also active for catalytic turnover. Examples using C-H and C=O activation are described to demonstrate these properties. Future directions include synthesis, characterization, and reaction studies with 2D and 3D monodispersed metal nanoclusters to obtain 100% selectivity in multipath reactions. Investigations of the unique structural, dynamic, and electronic properties of nanoparticles are likely to have major impact in surface technologies. The fields of heterogeneous, enzyme, and homogeneous catalysis are likely to merge for the benefit of all three.
UR - http://www.scopus.com/inward/record.url?scp=33746079227&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33746079227&partnerID=8YFLogxK
U2 - 10.1073/pnas.0507691103
DO - 10.1073/pnas.0507691103
M3 - Review article
C2 - 16740668
AN - SCOPUS:33746079227
SN - 0027-8424
VL - 103
SP - 10577
EP - 10583
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 28
ER -