Co-evolution of friction and permeability in a propped fracture under constant shear and implication to induced seismicity

F. Zhang, Y. Fang, D. Elsworth, C. Wang

Research output: Contribution to conferencePaper

Abstract

In this study, we explore the evolution of friction and permeability of a propped fracture using shearing-concurrent measurements of permeability during constant velocity shearing experiments. We separately examine the effects of normal stress (1 MPa, 3 MPa and 5 MPa), proppant thickness (mono-, double- and triple-layer), proppant size (40/80 mesh, 30/50 mesh and 20/40 mesh) and rock texture (Green River shale and Westerly granite) on the frictional and transport response of proppant packs confined between planar fracture surfaces. The results indicate that proppant-absent and proppant-filled fractures show different frictional strength. For fractures with proppants, we observed that (1) the frictional response is mainly controlled by the normal stress and proppant thickness, (2) permeability of the propped fracture is mainly controlled by the magnitude of the normal stress, the proppant thickness and the proppant size. Permeability of the propped fracture decreases during shearing, which is plausibly due to proppant particle crushing and related clogging. Proppants become prone to crushing if the shear loading evolves concurrently with the normal loading. Above combined conclusions suggest the use of high-concentration proppants in the field, which not only provides high hydraulic conductivity for hydro-carbon production, but also help to mitigate the risk of induced seismicity.

Original languageEnglish (US)
StatePublished - Jan 1 2018
Event52nd U.S. Rock Mechanics/Geomechanics Symposium - Seattle, United States
Duration: Jun 17 2018Jun 20 2018

Other

Other52nd U.S. Rock Mechanics/Geomechanics Symposium
CountryUnited States
CitySeattle
Period6/17/186/20/18

Fingerprint

induced seismicity
Proppants
coevolution
permeability
friction
Friction
shear
shearing
mesh
crushing
Shearing
plugging
Crushing
granite
westerly
hydraulics
rivers
Induced Seismicity
hydraulic conductivity
shale

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Geochemistry and Petrology

Cite this

Zhang, F., Fang, Y., Elsworth, D., & Wang, C. (2018). Co-evolution of friction and permeability in a propped fracture under constant shear and implication to induced seismicity. Paper presented at 52nd U.S. Rock Mechanics/Geomechanics Symposium, Seattle, United States.
Zhang, F. ; Fang, Y. ; Elsworth, D. ; Wang, C. / Co-evolution of friction and permeability in a propped fracture under constant shear and implication to induced seismicity. Paper presented at 52nd U.S. Rock Mechanics/Geomechanics Symposium, Seattle, United States.
@conference{22eca402be284c70ba970450bb52d4c1,
title = "Co-evolution of friction and permeability in a propped fracture under constant shear and implication to induced seismicity",
abstract = "In this study, we explore the evolution of friction and permeability of a propped fracture using shearing-concurrent measurements of permeability during constant velocity shearing experiments. We separately examine the effects of normal stress (1 MPa, 3 MPa and 5 MPa), proppant thickness (mono-, double- and triple-layer), proppant size (40/80 mesh, 30/50 mesh and 20/40 mesh) and rock texture (Green River shale and Westerly granite) on the frictional and transport response of proppant packs confined between planar fracture surfaces. The results indicate that proppant-absent and proppant-filled fractures show different frictional strength. For fractures with proppants, we observed that (1) the frictional response is mainly controlled by the normal stress and proppant thickness, (2) permeability of the propped fracture is mainly controlled by the magnitude of the normal stress, the proppant thickness and the proppant size. Permeability of the propped fracture decreases during shearing, which is plausibly due to proppant particle crushing and related clogging. Proppants become prone to crushing if the shear loading evolves concurrently with the normal loading. Above combined conclusions suggest the use of high-concentration proppants in the field, which not only provides high hydraulic conductivity for hydro-carbon production, but also help to mitigate the risk of induced seismicity.",
author = "F. Zhang and Y. Fang and D. Elsworth and C. Wang",
year = "2018",
month = "1",
day = "1",
language = "English (US)",
note = "52nd U.S. Rock Mechanics/Geomechanics Symposium ; Conference date: 17-06-2018 Through 20-06-2018",

}

Zhang, F, Fang, Y, Elsworth, D & Wang, C 2018, 'Co-evolution of friction and permeability in a propped fracture under constant shear and implication to induced seismicity', Paper presented at 52nd U.S. Rock Mechanics/Geomechanics Symposium, Seattle, United States, 6/17/18 - 6/20/18.

Co-evolution of friction and permeability in a propped fracture under constant shear and implication to induced seismicity. / Zhang, F.; Fang, Y.; Elsworth, D.; Wang, C.

2018. Paper presented at 52nd U.S. Rock Mechanics/Geomechanics Symposium, Seattle, United States.

Research output: Contribution to conferencePaper

TY - CONF

T1 - Co-evolution of friction and permeability in a propped fracture under constant shear and implication to induced seismicity

AU - Zhang, F.

AU - Fang, Y.

AU - Elsworth, D.

AU - Wang, C.

PY - 2018/1/1

Y1 - 2018/1/1

N2 - In this study, we explore the evolution of friction and permeability of a propped fracture using shearing-concurrent measurements of permeability during constant velocity shearing experiments. We separately examine the effects of normal stress (1 MPa, 3 MPa and 5 MPa), proppant thickness (mono-, double- and triple-layer), proppant size (40/80 mesh, 30/50 mesh and 20/40 mesh) and rock texture (Green River shale and Westerly granite) on the frictional and transport response of proppant packs confined between planar fracture surfaces. The results indicate that proppant-absent and proppant-filled fractures show different frictional strength. For fractures with proppants, we observed that (1) the frictional response is mainly controlled by the normal stress and proppant thickness, (2) permeability of the propped fracture is mainly controlled by the magnitude of the normal stress, the proppant thickness and the proppant size. Permeability of the propped fracture decreases during shearing, which is plausibly due to proppant particle crushing and related clogging. Proppants become prone to crushing if the shear loading evolves concurrently with the normal loading. Above combined conclusions suggest the use of high-concentration proppants in the field, which not only provides high hydraulic conductivity for hydro-carbon production, but also help to mitigate the risk of induced seismicity.

AB - In this study, we explore the evolution of friction and permeability of a propped fracture using shearing-concurrent measurements of permeability during constant velocity shearing experiments. We separately examine the effects of normal stress (1 MPa, 3 MPa and 5 MPa), proppant thickness (mono-, double- and triple-layer), proppant size (40/80 mesh, 30/50 mesh and 20/40 mesh) and rock texture (Green River shale and Westerly granite) on the frictional and transport response of proppant packs confined between planar fracture surfaces. The results indicate that proppant-absent and proppant-filled fractures show different frictional strength. For fractures with proppants, we observed that (1) the frictional response is mainly controlled by the normal stress and proppant thickness, (2) permeability of the propped fracture is mainly controlled by the magnitude of the normal stress, the proppant thickness and the proppant size. Permeability of the propped fracture decreases during shearing, which is plausibly due to proppant particle crushing and related clogging. Proppants become prone to crushing if the shear loading evolves concurrently with the normal loading. Above combined conclusions suggest the use of high-concentration proppants in the field, which not only provides high hydraulic conductivity for hydro-carbon production, but also help to mitigate the risk of induced seismicity.

UR - http://www.scopus.com/inward/record.url?scp=85053460604&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85053460604&partnerID=8YFLogxK

M3 - Paper

AN - SCOPUS:85053460604

ER -

Zhang F, Fang Y, Elsworth D, Wang C. Co-evolution of friction and permeability in a propped fracture under constant shear and implication to induced seismicity. 2018. Paper presented at 52nd U.S. Rock Mechanics/Geomechanics Symposium, Seattle, United States.