Coalitions of things: Supporting ISR tasks via internet of things approaches

Alun Preece, Ian Taylor, Andrew Dawson, Dave Braines, Nick O'Leary, Anna Thomas, Richard Tomsett, Tom La Porta, Jonathan Z. Bakdash, Erin Zaroukian

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

In the wake of rapid maturing of Internet of Things (IoT) approaches and technologies in the commercial sector, the IoT is increasingly seen as a key 'disruptive' technology in military environments. Future operational environments are expected to be characterized by a lower proportion of human participants and a higher proportion of autonomous and semi-autonomous devices. This view is reflected in both US 'third offset' and UK 'information age' thinking and is likely to have a profound effect on how multinational coalition operations are conducted in the future. Much of the initial consideration of IoT adoption in the military domain has rightly focused on security concerns, reflecting similar cautions in the early era of electronic commerce. As IoT approaches mature, this initial technical focus is likely to shift to considerations of interactivity and policy. In this paper, rather than considering the broader range of IoT applications in the military context, we focus on roles for IoT concepts and devices in future intelligence, surveillance and reconnaissance (ISR) tasks, drawing on experience in sensor-mission resourcing and human-computer collaboration (HCC) for ISR. We highlight the importance of low training overheads in the adoption of IoT approaches, and the need to balance proactivity and interactivity (push vs pull modes). As with sensing systems over the last decade, we emphasize that, to be valuable in ISR tasks, IoT devices will need a degree of mission-awareness in addition to an ability to self-manage their limited resources (power, memory, bandwidth, computation, etc). In coalition operations, the management and potential sharing of IoT devices and systems among partners (e.g., in cross-coalition tactical-edge ISR teams) becomes a key issue due heterogeneous factors such as language, policy, procedure and doctrine. Finally, we briefly outline a platform that we have developed in order to experiment with human-IoT teaming on ISR tasks, in both physical and virtual settings.

Original languageEnglish (US)
Title of host publicationGround/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR VIII
EditorsTien Pham, Michael A. Kolodny
PublisherSPIE
ISBN (Electronic)9781510608818
DOIs
StatePublished - 2017
Event8th Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR - Anaheim, United States
Duration: Apr 10 2017Apr 13 2017

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume10190
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Other

Other8th Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR
CountryUnited States
CityAnaheim
Period4/10/174/13/17

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Coalitions of things: Supporting ISR tasks via internet of things approaches'. Together they form a unique fingerprint.

  • Cite this

    Preece, A., Taylor, I., Dawson, A., Braines, D., O'Leary, N., Thomas, A., Tomsett, R., La Porta, T., Bakdash, J. Z., & Zaroukian, E. (2017). Coalitions of things: Supporting ISR tasks via internet of things approaches. In T. Pham, & M. A. Kolodny (Eds.), Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR VIII [101900A] (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 10190). SPIE. https://doi.org/10.1117/12.2266460