Abstract
We study a two-hop cache-aided network, where a layer of relay nodes connects a server and a set of end users, i.e., a combination network. We consider the case where both the relay nodes and the end users have caching capabilities. We provide upper and lower bounds which are applicable to any combination network, noting that previous work had focused on models where the relays do not have caches as well as schemes that were suitable for a special class of combination networks. Utilizing maximum distance separable (MDS) codes, we jointly optimize the placement and the delivery phases, demonstrating the impact of cache memories in alleviating the delivery load over the two hop communications. Moreover, we show how cooperation between the relay nodes and the end users can effectively replace the server during the delivery phase whenever the total memory at each end user and its connected relay nodes is sufficient to store the database.
Original language | English (US) |
---|---|
Title of host publication | 2017 IEEE International Symposium on Information Theory, ISIT 2017 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 2433-2437 |
Number of pages | 5 |
ISBN (Electronic) | 9781509040964 |
DOIs | |
State | Published - Aug 9 2017 |
Event | 2017 IEEE International Symposium on Information Theory, ISIT 2017 - Aachen, Germany Duration: Jun 25 2017 → Jun 30 2017 |
Other
Other | 2017 IEEE International Symposium on Information Theory, ISIT 2017 |
---|---|
Country/Territory | Germany |
City | Aachen |
Period | 6/25/17 → 6/30/17 |
All Science Journal Classification (ASJC) codes
- Theoretical Computer Science
- Information Systems
- Modeling and Simulation
- Applied Mathematics