### Abstract

Recent work has developed coding theoretic approaches to add redundancy to distributed matrix-vector multiplications with the goal of speeding up the computation by mitigating the straggler effect in distributed computing. In this paper, we consider the case where the matrix comes from a small (e.g., binary) alphabet, where a variant of a popular method called the 'Four-Russians method' is known to have significantly lower computational complexity as compared with the usual matrix-vector multiplication algorithm. We develop novel code constructions that are applicable to binary matrix-vector multiplication via a variant of the Four-Russians method called the Mailman algorithm. Specifically, in our constructions, the encoded matrices have a low alphabet that ensures lower computational complexity, as well as good straggler tolerance. We also present a trade-off between the communication and computation cost of distributed coded matrix-vector multiplication for general, possibly non-binary, matrices.

Original language | English (US) |
---|---|

Title of host publication | 2018 IEEE International Symposium on Information Theory, ISIT 2018 |

Publisher | Institute of Electrical and Electronics Engineers Inc. |

Pages | 1625-1629 |

Number of pages | 5 |

ISBN (Print) | 9781538647806 |

DOIs | |

State | Published - Aug 15 2018 |

Event | 2018 IEEE International Symposium on Information Theory, ISIT 2018 - Vail, United States Duration: Jun 17 2018 → Jun 22 2018 |

### Publication series

Name | IEEE International Symposium on Information Theory - Proceedings |
---|---|

Volume | 2018-June |

ISSN (Print) | 2157-8095 |

### Other

Other | 2018 IEEE International Symposium on Information Theory, ISIT 2018 |
---|---|

Country | United States |

City | Vail |

Period | 6/17/18 → 6/22/18 |

### All Science Journal Classification (ASJC) codes

- Theoretical Computer Science
- Information Systems
- Modeling and Simulation
- Applied Mathematics

## Fingerprint Dive into the research topics of 'Codes for Distributed Finite Alphabet Matrix-Vector Multiplication'. Together they form a unique fingerprint.

## Cite this

*2018 IEEE International Symposium on Information Theory, ISIT 2018*(pp. 1625-1629). [8437542] (IEEE International Symposium on Information Theory - Proceedings; Vol. 2018-June). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ISIT.2018.8437542