Cold sintered composites consisting of PEEK and metal oxides with improved electrical properties via the hybrid interfaces

Mingming Si, Jing Guo, Jianyu Hao, Xuetong Zhao, Clive A. Randall, Hong Wang

Research output: Contribution to journalArticlepeer-review

Abstract

The manipulation of interfacial structures offers an effective route to improve the physical and chemical properties of materials. However, it is challenging to design ceramic-based composites with hybrid interfaces involved with organics and inorganics through the conventional sintering technique, due to the incompatibility of these materials at high temperatures. Here, we propose a strategy to integrate poly-ether-ether-ketone together with several metal-oxide additives into zinc oxide (ZnO) to form composite varistors via cold sintering process. Nanoscale layers of hybrid additives are dispersed between densified ZnO grain structures forming Schottky barriers, which dramatically improves the electrical properties of the resulted composites. Compared with pure ZnO, the breakdown electric field at 0.1 mA mm−2 reaches over 13 kV mm−1. Particularly, the composite shows a switch-like effect similar with switching devices, with an extraordinarily high nonlinear coefficient of 375. In addition, the elastic module decreases with the addition of PEEK. Given the flexibility in the dopants of polymers and metal oxides, this work provides a unique route to design composite materials with superior performances.

Original languageEnglish (US)
Article number109349
JournalComposites Part B: Engineering
Volume226
DOIs
StatePublished - Dec 1 2021

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Mechanics of Materials
  • Mechanical Engineering
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Cold sintered composites consisting of PEEK and metal oxides with improved electrical properties via the hybrid interfaces'. Together they form a unique fingerprint.

Cite this