Compact pericyclic continuously variable speed transmission systems: Design features and high-reduction variable speed case studies

Zihni B. Saribay, Alphonse J. Lemanski, K. W. Wang, Edward Smith, Robert C. Bill, Suren Rao

Research output: Contribution to journalConference article

3 Citations (Scopus)

Abstract

The Pericyclic Variable Speed Transmission (PVT) is a dual-input one output differential power train system which can be adapted to various vehicle systems as a main transmission component. The PVT system can also be operated as a fixed speed drivetrain when one of the input members is held stationary. Wide range of reduction ratios, (1.05:1 up to 50:1), can be achieved for a fixed speed PVT in one compact unit. To explore the range of potential PVT based variable speed transmission concepts, two bounding cases were considered for a 600HP light rotary-wing aircraft. The total speed reduction ratio of the helicopter transmission is 285.7:1 for the low rotor speed (140 RPM), and 133:1 for the high rotor speed (300 RPM). The transmission in the case studies is the combination of a 6.25:1 ratio PVT as the first reduction stage and 45:1 ratio PVT for the second reduction stage, in the first case study the speed increase is achieved by a 45:1 ratio PVT unit while in the second case study it is increased by the 6:25:1 ratio PVT. Critical design elements, such as kinematical features, power flow, power circulation, and component torque on the two conceptual PVT designs are analyzed to investigate the impact of different reduction ratio variable speed PVT units on the transmission system configuration. The PVT design procedure starts with the determination of the number of teeth on the gears to achieve the low speed reduction ratio. Then, the speed of the speed control member is calculated to achieve required output speed increase. Both systems are designed to minimize internal power circulation during all operating speeds. The analysis shows that both systems branch approximately 50% of the engine power to the Controllable VariableSpeed Unit (CVU) at increased rotor speed (300RPM). The kineto-static torques of the components are obtained by the system kinematics and the power flow. The torque carried by CVU of the 6.25:1 ratio variable speed unit is 2% of the 45:1 ratio variable speed system, in a more compact and light weight CVU units; hence, in general it is advantageous to couple the CVU unit with the low reduction ratio PVT.

Original languageEnglish (US)
Pages (from-to)1553-1563
Number of pages11
JournalAnnual Forum Proceedings - AHS International
Volume2
StatePublished - Aug 20 2007
EventAmerican Helicopter Society International 63rd Annual Forum - Riding the Wave of New Vertical Flight Technology - Virginia Beach, VA, United States
Duration: May 1 2007May 3 2007

Fingerprint

Variable speed transmissions
Systems analysis
Torque
Rotors
Vehicle transmissions

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Cite this

@article{f9175e6fe45b491baf6cdd87c392c701,
title = "Compact pericyclic continuously variable speed transmission systems: Design features and high-reduction variable speed case studies",
abstract = "The Pericyclic Variable Speed Transmission (PVT) is a dual-input one output differential power train system which can be adapted to various vehicle systems as a main transmission component. The PVT system can also be operated as a fixed speed drivetrain when one of the input members is held stationary. Wide range of reduction ratios, (1.05:1 up to 50:1), can be achieved for a fixed speed PVT in one compact unit. To explore the range of potential PVT based variable speed transmission concepts, two bounding cases were considered for a 600HP light rotary-wing aircraft. The total speed reduction ratio of the helicopter transmission is 285.7:1 for the low rotor speed (140 RPM), and 133:1 for the high rotor speed (300 RPM). The transmission in the case studies is the combination of a 6.25:1 ratio PVT as the first reduction stage and 45:1 ratio PVT for the second reduction stage, in the first case study the speed increase is achieved by a 45:1 ratio PVT unit while in the second case study it is increased by the 6:25:1 ratio PVT. Critical design elements, such as kinematical features, power flow, power circulation, and component torque on the two conceptual PVT designs are analyzed to investigate the impact of different reduction ratio variable speed PVT units on the transmission system configuration. The PVT design procedure starts with the determination of the number of teeth on the gears to achieve the low speed reduction ratio. Then, the speed of the speed control member is calculated to achieve required output speed increase. Both systems are designed to minimize internal power circulation during all operating speeds. The analysis shows that both systems branch approximately 50{\%} of the engine power to the Controllable VariableSpeed Unit (CVU) at increased rotor speed (300RPM). The kineto-static torques of the components are obtained by the system kinematics and the power flow. The torque carried by CVU of the 6.25:1 ratio variable speed unit is 2{\%} of the 45:1 ratio variable speed system, in a more compact and light weight CVU units; hence, in general it is advantageous to couple the CVU unit with the low reduction ratio PVT.",
author = "Saribay, {Zihni B.} and Lemanski, {Alphonse J.} and Wang, {K. W.} and Edward Smith and Bill, {Robert C.} and Suren Rao",
year = "2007",
month = "8",
day = "20",
language = "English (US)",
volume = "2",
pages = "1553--1563",
journal = "Annual Forum Proceedings - AHS International",
issn = "1552-2938",
publisher = "American Helicopter Society",

}

Compact pericyclic continuously variable speed transmission systems : Design features and high-reduction variable speed case studies. / Saribay, Zihni B.; Lemanski, Alphonse J.; Wang, K. W.; Smith, Edward; Bill, Robert C.; Rao, Suren.

In: Annual Forum Proceedings - AHS International, Vol. 2, 20.08.2007, p. 1553-1563.

Research output: Contribution to journalConference article

TY - JOUR

T1 - Compact pericyclic continuously variable speed transmission systems

T2 - Design features and high-reduction variable speed case studies

AU - Saribay, Zihni B.

AU - Lemanski, Alphonse J.

AU - Wang, K. W.

AU - Smith, Edward

AU - Bill, Robert C.

AU - Rao, Suren

PY - 2007/8/20

Y1 - 2007/8/20

N2 - The Pericyclic Variable Speed Transmission (PVT) is a dual-input one output differential power train system which can be adapted to various vehicle systems as a main transmission component. The PVT system can also be operated as a fixed speed drivetrain when one of the input members is held stationary. Wide range of reduction ratios, (1.05:1 up to 50:1), can be achieved for a fixed speed PVT in one compact unit. To explore the range of potential PVT based variable speed transmission concepts, two bounding cases were considered for a 600HP light rotary-wing aircraft. The total speed reduction ratio of the helicopter transmission is 285.7:1 for the low rotor speed (140 RPM), and 133:1 for the high rotor speed (300 RPM). The transmission in the case studies is the combination of a 6.25:1 ratio PVT as the first reduction stage and 45:1 ratio PVT for the second reduction stage, in the first case study the speed increase is achieved by a 45:1 ratio PVT unit while in the second case study it is increased by the 6:25:1 ratio PVT. Critical design elements, such as kinematical features, power flow, power circulation, and component torque on the two conceptual PVT designs are analyzed to investigate the impact of different reduction ratio variable speed PVT units on the transmission system configuration. The PVT design procedure starts with the determination of the number of teeth on the gears to achieve the low speed reduction ratio. Then, the speed of the speed control member is calculated to achieve required output speed increase. Both systems are designed to minimize internal power circulation during all operating speeds. The analysis shows that both systems branch approximately 50% of the engine power to the Controllable VariableSpeed Unit (CVU) at increased rotor speed (300RPM). The kineto-static torques of the components are obtained by the system kinematics and the power flow. The torque carried by CVU of the 6.25:1 ratio variable speed unit is 2% of the 45:1 ratio variable speed system, in a more compact and light weight CVU units; hence, in general it is advantageous to couple the CVU unit with the low reduction ratio PVT.

AB - The Pericyclic Variable Speed Transmission (PVT) is a dual-input one output differential power train system which can be adapted to various vehicle systems as a main transmission component. The PVT system can also be operated as a fixed speed drivetrain when one of the input members is held stationary. Wide range of reduction ratios, (1.05:1 up to 50:1), can be achieved for a fixed speed PVT in one compact unit. To explore the range of potential PVT based variable speed transmission concepts, two bounding cases were considered for a 600HP light rotary-wing aircraft. The total speed reduction ratio of the helicopter transmission is 285.7:1 for the low rotor speed (140 RPM), and 133:1 for the high rotor speed (300 RPM). The transmission in the case studies is the combination of a 6.25:1 ratio PVT as the first reduction stage and 45:1 ratio PVT for the second reduction stage, in the first case study the speed increase is achieved by a 45:1 ratio PVT unit while in the second case study it is increased by the 6:25:1 ratio PVT. Critical design elements, such as kinematical features, power flow, power circulation, and component torque on the two conceptual PVT designs are analyzed to investigate the impact of different reduction ratio variable speed PVT units on the transmission system configuration. The PVT design procedure starts with the determination of the number of teeth on the gears to achieve the low speed reduction ratio. Then, the speed of the speed control member is calculated to achieve required output speed increase. Both systems are designed to minimize internal power circulation during all operating speeds. The analysis shows that both systems branch approximately 50% of the engine power to the Controllable VariableSpeed Unit (CVU) at increased rotor speed (300RPM). The kineto-static torques of the components are obtained by the system kinematics and the power flow. The torque carried by CVU of the 6.25:1 ratio variable speed unit is 2% of the 45:1 ratio variable speed system, in a more compact and light weight CVU units; hence, in general it is advantageous to couple the CVU unit with the low reduction ratio PVT.

UR - http://www.scopus.com/inward/record.url?scp=34547869277&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34547869277&partnerID=8YFLogxK

M3 - Conference article

AN - SCOPUS:34547869277

VL - 2

SP - 1553

EP - 1563

JO - Annual Forum Proceedings - AHS International

JF - Annual Forum Proceedings - AHS International

SN - 1552-2938

ER -