Abstract
This paper considers the scaling principles associated with the power and energy density of batteries and generators as applied to mobile robots and similarly-sized vehicles. We seek to identify, based on present technology, the size range at which a generator inclusive of a direct current electric motor, gearbox, and internal combustion engine can be effectively used to replace modern batteries. Models were derived to scale each component of the generator as a function of power, mass, efficiency, and speed. For a given power, energy, or mass requirement, these models illustrate that generators based on conventional technology are ill-suited for smaller robots. The results indicate that there is an intermediate robot size above which a hybrid generator/battery architecture is desirable. Using these scaling principles with modest extensions of existing battery technologies, it is also possible to infer the near-future performance of robot power technology and thus illustrate whether the generator-versus-battery tradeoff will shift toward or away from a hybrid robot topology for smaller vehicle systems.
Original language | English (US) |
---|---|
Pages (from-to) | 130-138 |
Number of pages | 9 |
Journal | Journal of Power Sources |
Volume | 212 |
DOIs | |
State | Published - Aug 15 2012 |
All Science Journal Classification (ASJC) codes
- Renewable Energy, Sustainability and the Environment
- Energy Engineering and Power Technology
- Physical and Theoretical Chemistry
- Electrical and Electronic Engineering