Comparison of defect structure in N2O- and NH 3-nitrided oxide dielectrics

J. T. Yount, Patrick M. Lenahan, J. T. Krick

Research output: Contribution to journalReview articlepeer-review

34 Scopus citations

Abstract

Electron spin resonance spectroscopy is used to identify and compare point defects in N2O-nitrided, NH3-nitrided, and conventional SiO2 films. We detect only three types of defects in these dielectrics. Pb centers, the primary source of interface states in Si/SiO2 systems under all technologically significant circumstances, appear in all three dielectrics. Both N2O and NH3 nitridation result in higher as-processed Pb interface defect densities, but lower radiation-induced Pb defect generation. Thus N2O nitridation appears capable, as does NH3 nitridation, of providing reduced radiation-induced interface state generation. In addition, both nitridations appear capable of lowering the number of radiation-induced E' centers, the dominant hole trap in conventional thermal oxides. NH3 nitridation, however, appears to offer greater resistance to radiation-induced generation of these traps. NH3 nitridation also results in a large number of bridging nitrogen centers, and strong evidence indicates that the bridging nitrogen centers are the dominant electron trap in NH 3-nitrided and -reoxidized nitrided oxide films. These defects are absent in N2O-nitrided films, which are known to exhibit reduced levels of electron trapping.

Original languageEnglish (US)
Pages (from-to)1754-1758
Number of pages5
JournalJournal of Applied Physics
Volume76
Issue number3
DOIs
StatePublished - Dec 1 1994

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Comparison of defect structure in N<sub>2</sub>O- and NH <sub>3</sub>-nitrided oxide dielectrics'. Together they form a unique fingerprint.

Cite this