Comparison of pin surface heat transfer in arrays of oblong and cylindrical pin fins

Kathryn L. Kirsch, Jason K. Ostanek, Karen A. Thole

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Pin fin arrays are most commonly used to promote convective cooling within the internal passages of gas turbine airfoils. Contributing to the heat transfer are the surfaces of the channel walls as well as the pin itself. Generally the pin fin cross section is circular; however, certain applications benefit from using other shapes such as oblong pin fins. The current study focuses on characterizing the heat transfer distribution on the surface of oblong pin fins with a particular focus on pin spacing effects. Comparisons were made with circular cylindrical pin fins, where both oblong and circular cylindrical pins had a height-to-diameter ratio of unity, with both streamwise and spanwise spacing varying between two and three diameters. To determine the effect of relative pin placement, measurements were taken in the first of a single row and in the third row of a multirow array. Results showed that area-averaged heat transfer on the pin surface was between 30 and 35% lower for oblong pins in comparison to cylindrical. While heat transfer on the circular cylindrical pin experienced one minimum prior to boundary layer separation, heat transfer on the oblong pin fins experienced two minimums, where one is located before the boundary layer transitions to a turbulent boundary layer and the other prior to separation at the trailing edge.

Original languageEnglish (US)
Article number041015
JournalJournal of Turbomachinery
Volume136
Issue number4
DOIs
StatePublished - Oct 23 2013

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Comparison of pin surface heat transfer in arrays of oblong and cylindrical pin fins'. Together they form a unique fingerprint.

Cite this