Complex landing gear noise prediction using a simple toolkit

Leonard V. Lopes, Kenneth Steven Brentner, Philip John Morris, Geoffery M. Lilley, David P. Lockard

Research output: Contribution to conferencePaper

9 Citations (Scopus)

Abstract

This paper describes the initial development of a method for the prediction of the noise radiated by aircraft landing gear. Called the Landing Gear Model and Acoustic Prediction (LGMAP), it will eventually include all the geometric complexity of a realistic landing gear. This will be achieved by dividing the gear into a number of elements or objects. The noise from each of these elements is described by a simple acoustic model. Each object has three attributes; its geometry and location, and an upstream and downstream environment. This enables the flow or noise from one element to interact with any other. The method is designed to allow improved element acoustic models to be introduced as they become available. This paper contains some initial examples for two objects; a cylinder element and a wheel model. The landing gear is divided into assemblies made up of these elements. The radiated noise is calculated in the time-domain using a source-time-dominant solution to the Ffowcs Williams-Hawkings equation. This initial, rather crude, model is calibrated by comparison with experiment and existing noise prediction methods. The purpose of this paper is primarily to introduce the modeling philosophy rather than make extensive predictions. Though more than one example is given. The model is still in its early development stages and many important acoustic mechanisms are not included. Some of the future plans and necessary extensions to the model are discussed.

Original languageEnglish (US)
Pages615-628
Number of pages14
StatePublished - Dec 1 2005
Event43rd AIAA Aerospace Sciences Meeting and Exhibit - Reno, NV, United States
Duration: Jan 10 2005Jan 13 2005

Other

Other43rd AIAA Aerospace Sciences Meeting and Exhibit
CountryUnited States
CityReno, NV
Period1/10/051/13/05

Fingerprint

Acoustic noise
Acoustics
Landing gear (aircraft)
Gears
Wheels
Geometry
Experiments

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Cite this

Lopes, L. V., Brentner, K. S., Morris, P. J., Lilley, G. M., & Lockard, D. P. (2005). Complex landing gear noise prediction using a simple toolkit. 615-628. Paper presented at 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, United States.
Lopes, Leonard V. ; Brentner, Kenneth Steven ; Morris, Philip John ; Lilley, Geoffery M. ; Lockard, David P. / Complex landing gear noise prediction using a simple toolkit. Paper presented at 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, United States.14 p.
@conference{5ebf84998dae4b1f971f0448a588e83f,
title = "Complex landing gear noise prediction using a simple toolkit",
abstract = "This paper describes the initial development of a method for the prediction of the noise radiated by aircraft landing gear. Called the Landing Gear Model and Acoustic Prediction (LGMAP), it will eventually include all the geometric complexity of a realistic landing gear. This will be achieved by dividing the gear into a number of elements or objects. The noise from each of these elements is described by a simple acoustic model. Each object has three attributes; its geometry and location, and an upstream and downstream environment. This enables the flow or noise from one element to interact with any other. The method is designed to allow improved element acoustic models to be introduced as they become available. This paper contains some initial examples for two objects; a cylinder element and a wheel model. The landing gear is divided into assemblies made up of these elements. The radiated noise is calculated in the time-domain using a source-time-dominant solution to the Ffowcs Williams-Hawkings equation. This initial, rather crude, model is calibrated by comparison with experiment and existing noise prediction methods. The purpose of this paper is primarily to introduce the modeling philosophy rather than make extensive predictions. Though more than one example is given. The model is still in its early development stages and many important acoustic mechanisms are not included. Some of the future plans and necessary extensions to the model are discussed.",
author = "Lopes, {Leonard V.} and Brentner, {Kenneth Steven} and Morris, {Philip John} and Lilley, {Geoffery M.} and Lockard, {David P.}",
year = "2005",
month = "12",
day = "1",
language = "English (US)",
pages = "615--628",
note = "43rd AIAA Aerospace Sciences Meeting and Exhibit ; Conference date: 10-01-2005 Through 13-01-2005",

}

Lopes, LV, Brentner, KS, Morris, PJ, Lilley, GM & Lockard, DP 2005, 'Complex landing gear noise prediction using a simple toolkit' Paper presented at 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, United States, 1/10/05 - 1/13/05, pp. 615-628.

Complex landing gear noise prediction using a simple toolkit. / Lopes, Leonard V.; Brentner, Kenneth Steven; Morris, Philip John; Lilley, Geoffery M.; Lockard, David P.

2005. 615-628 Paper presented at 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, United States.

Research output: Contribution to conferencePaper

TY - CONF

T1 - Complex landing gear noise prediction using a simple toolkit

AU - Lopes, Leonard V.

AU - Brentner, Kenneth Steven

AU - Morris, Philip John

AU - Lilley, Geoffery M.

AU - Lockard, David P.

PY - 2005/12/1

Y1 - 2005/12/1

N2 - This paper describes the initial development of a method for the prediction of the noise radiated by aircraft landing gear. Called the Landing Gear Model and Acoustic Prediction (LGMAP), it will eventually include all the geometric complexity of a realistic landing gear. This will be achieved by dividing the gear into a number of elements or objects. The noise from each of these elements is described by a simple acoustic model. Each object has three attributes; its geometry and location, and an upstream and downstream environment. This enables the flow or noise from one element to interact with any other. The method is designed to allow improved element acoustic models to be introduced as they become available. This paper contains some initial examples for two objects; a cylinder element and a wheel model. The landing gear is divided into assemblies made up of these elements. The radiated noise is calculated in the time-domain using a source-time-dominant solution to the Ffowcs Williams-Hawkings equation. This initial, rather crude, model is calibrated by comparison with experiment and existing noise prediction methods. The purpose of this paper is primarily to introduce the modeling philosophy rather than make extensive predictions. Though more than one example is given. The model is still in its early development stages and many important acoustic mechanisms are not included. Some of the future plans and necessary extensions to the model are discussed.

AB - This paper describes the initial development of a method for the prediction of the noise radiated by aircraft landing gear. Called the Landing Gear Model and Acoustic Prediction (LGMAP), it will eventually include all the geometric complexity of a realistic landing gear. This will be achieved by dividing the gear into a number of elements or objects. The noise from each of these elements is described by a simple acoustic model. Each object has three attributes; its geometry and location, and an upstream and downstream environment. This enables the flow or noise from one element to interact with any other. The method is designed to allow improved element acoustic models to be introduced as they become available. This paper contains some initial examples for two objects; a cylinder element and a wheel model. The landing gear is divided into assemblies made up of these elements. The radiated noise is calculated in the time-domain using a source-time-dominant solution to the Ffowcs Williams-Hawkings equation. This initial, rather crude, model is calibrated by comparison with experiment and existing noise prediction methods. The purpose of this paper is primarily to introduce the modeling philosophy rather than make extensive predictions. Though more than one example is given. The model is still in its early development stages and many important acoustic mechanisms are not included. Some of the future plans and necessary extensions to the model are discussed.

UR - http://www.scopus.com/inward/record.url?scp=30744437711&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=30744437711&partnerID=8YFLogxK

M3 - Paper

AN - SCOPUS:30744437711

SP - 615

EP - 628

ER -

Lopes LV, Brentner KS, Morris PJ, Lilley GM, Lockard DP. Complex landing gear noise prediction using a simple toolkit. 2005. Paper presented at 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, United States.