15 Scopus citations

Abstract

Geochemical reactions between fluids and carbonate rocks can change porosity and permeability during carbon dioxide (CO2) flooding, which may significantly affect well injectivity, well integrity, and oil recovery. Reactions can cause significant scaling in and around injection and production wells, leading to high operating costs. Dissolution-induced well-integrity issues and seabed subsidence are also reported as a substantial problem at the Ekofisk field. Furthermore, mineral reactions can create fractures and vugs that can cause injection-conformance issues, as observed in experiments and pressure transients in field tests. Although these issues are well-known, there are differing opinions in the literature regarding the overall impacts of geochemical reactions on permeability and injectivity for CO2 flooding. In this research, we develop a new model that fully couples reactive transport and compositional modeling to understand the interplay between multiphase flow, phase behavior, and geochem-ical reactions under reservoir and injection conditions relevant in the field. Simulations were carried out with a new in-house compositional simulator on the basis of an implicit-pressure/explicit-composition and finite-volume formulation that is coupled with a reactive transport solver. The compositional and geochemical models were validated separately with CMG-GEM (CMG 2012) and CrunchFlow (Steefel 2009). Phase-and-chemical equilibrium constraints are solved simultaneously to account for the interaction between phase splits and chemical speciation. The Søreide and Whitson (1992) modified Peng-Robinson equation of state is used to model component concentrations present in the aqueous and hydrocarbon phases. The mineral-dissolution reactions are modeled with kinetic-rate laws that depend on the rock/brine contact area and the brine geochemistry, including pH and water composition. Injectivity changes caused by rock dissolution and formation scaling are investigated for a five-spot pattern by use of several common field-injection conditions. The results show that the type of injection scheme and water used (fresh water, formation water, and seawater) has a significant impact on porosity and permeability changes for the same total volume of CO2 and water injected. For continuous CO2 injection, very small porosity changes are observed as a result of evaporation of water near the injection well. For water-alternating-gas (WAG) injection, however, the injectivity increases from near zero to 50%, depending on the CO2 slug size, number of cycles, and the total amount of injected water. Simultaneous water-alternating-gas injection (SWAG) shows significantly greater injectiv-ity increases than WAG, primarily because of greater exposure time of the carbonate surface to CO2-saturated brine coupled with continued displacement of calcite-saturated brine. For SWAG, carbonate dissolution occurs primarily near the injection well, extending to larger distances only when the specific surface area is small. Formation water and seawater lead to similar injectivity increases. Carbonated waterflooding (a special case of SWAG) shows even greater porosity increases than SWAG because more water is injected in this case, which continuously sweeps out cal-cite-saturated brine. The minerals have a larger solubility in brine than in fresh water because of the formation of aqueous complexes, leading to more dissolution instead of precipitation. Overall, this research points to the importance of considering the complex process coupling among multiphase flow, transport, phase behavior, and geochemical reactions in understanding and designing schemes for CO2 flooding as well as enhanced oil recovery at large.

Original languageEnglish (US)
Pages (from-to)809-826
Number of pages18
JournalSPE Journal
Volume21
Issue number3
StatePublished - Jun 2016

All Science Journal Classification (ASJC) codes

  • Energy Engineering and Power Technology
  • Geotechnical Engineering and Engineering Geology

Fingerprint Dive into the research topics of 'Compositional modeling of dissolution-induced injectivity alteration during CO<sub>2</sub> flooding in carbonate reservoirs'. Together they form a unique fingerprint.

  • Cite this