Compressive oversampling for robust data transmission in sensor networks

Zainul Charbiwala, Supriyo Chakraborty, Sadaf Zahedi, Younghun Kim, Mani B. Srivastava, Ting He, Chatschik Bisdikian

Research output: Chapter in Book/Report/Conference proceedingConference contribution

59 Scopus citations

Abstract

Data loss in wireless sensing applications is inevitable and while there have been many attempts at coping with this issue, recent developments in the area of Compressive Sensing (CS) provide a new and attractive perspective. Since many physical signals of interest are known to be sparse or compressible, employing CS, not only compresses the data and reduces effective transmission rate, but also improves the robustness of the system to channel erasures. This is possible because reconstruction algorithms for compressively sampled signals are not hampered by the stochastic nature of wireless link disturbances, which has traditionally plagued attempts at proactively handling the effects of these errors. In this paper, we propose that if CS is employed for source compression, then CS can further be exploited as an application layer erasure coding strategy for recovering missing data. We show that CS erasure encoding (CSEC) with random sampling is efficient for handling missing data in erasure channels, paralleling the performance of BCH codes, with the added benefit of graceful degradation of the reconstruction error even when the amount of missing data far exceeds the designed redundancy. Further, since CSEC is equivalent to nominal oversampling in the incoherent measurement basis, it is computationally cheaper than conventional erasure coding. We support our proposal through extensive performance studies.

Original languageEnglish (US)
Title of host publication2010 Proceedings IEEE INFOCOM
DOIs
StatePublished - 2010
EventIEEE INFOCOM 2010 - San Diego, CA, United States
Duration: Mar 14 2010Mar 19 2010

Publication series

NameProceedings - IEEE INFOCOM
ISSN (Print)0743-166X

Other

OtherIEEE INFOCOM 2010
Country/TerritoryUnited States
CitySan Diego, CA
Period3/14/103/19/10

All Science Journal Classification (ASJC) codes

  • Computer Science(all)
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Compressive oversampling for robust data transmission in sensor networks'. Together they form a unique fingerprint.

Cite this