Computational analysis for shape-selective alkylation of naphthalene over zeolite catalysts

Chunshan Song, Xiaoliang Ma, Harold H. Schobert

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

This study is a computational analysis for shape-selective alkylation of naphthalene (including isopropylation, ethylation and methylation) by MINDO-PM3 calculations with MOPAC. There are 10 possible dialkylnaphthalene (DAN) isomers, with up to 3 from the so-called β, β-selective dialkylation including 2,6-, 2,7- and 2,3-DAN. However, only 2,6-DAN is the desired product. We calculated the frontier electron density fr(E) and molecular dimensions for alkylnaphthalene (AN) isomers and dialkylnaphthalene (DAN) isomers. The calculation shows that the 6-position in 2-AN has higher fr(E) value than 7-position. The more reactive position for electrophilic substitution has higher fr(E) value which represents the density of electrons in the highest occupied molecular orbital (HOMO). The formation of the cationic intermediate that leads to 2,6-DAN is favored energetically as compared to that for 2,7-DAN or 2,3-DAN. This suggests that during 2-AN alkylation inside a shape-selective channel, the formation of 2,6-DAN is favored electronically more than that of 2,7-DAN or 2,3-DAN, and thus the catalyst with lower acidity may favor 2,6-DAN. The results are consistent with experimental data in literature, and suggest that there is a restricted electronic transition-state selectivity to 2,6-DAN on some molecular-sieve catalysts with lower acidity, since both 2,6- and 2,7-DAN isomers are sterically permitted. In general, 2,6-DAN has a more linear structure with a similar or smaller critical diameter compared to 2,7-DAN, while 2,3-DAN always has a larger diameter than both 2,6- and 2,7-DAN.

Original languageEnglish (US)
Pages (from-to)305-321
Number of pages17
JournalACS Symposium Series
Volume738
StatePublished - 1999

Fingerprint

Zeolites
Alkylation
Naphthalene
Isomers
Catalysts
Acidity
Methylation
Molecular sieves
Molecular orbitals
Carrier concentration
Substitution reactions
naphthalene
Electrons

All Science Journal Classification (ASJC) codes

  • Chemistry(all)

Cite this

@article{99b3c44389f74b019e2b196c1ed0b665,
title = "Computational analysis for shape-selective alkylation of naphthalene over zeolite catalysts",
abstract = "This study is a computational analysis for shape-selective alkylation of naphthalene (including isopropylation, ethylation and methylation) by MINDO-PM3 calculations with MOPAC. There are 10 possible dialkylnaphthalene (DAN) isomers, with up to 3 from the so-called β, β-selective dialkylation including 2,6-, 2,7- and 2,3-DAN. However, only 2,6-DAN is the desired product. We calculated the frontier electron density fr(E) and molecular dimensions for alkylnaphthalene (AN) isomers and dialkylnaphthalene (DAN) isomers. The calculation shows that the 6-position in 2-AN has higher fr(E) value than 7-position. The more reactive position for electrophilic substitution has higher fr(E) value which represents the density of electrons in the highest occupied molecular orbital (HOMO). The formation of the cationic intermediate that leads to 2,6-DAN is favored energetically as compared to that for 2,7-DAN or 2,3-DAN. This suggests that during 2-AN alkylation inside a shape-selective channel, the formation of 2,6-DAN is favored electronically more than that of 2,7-DAN or 2,3-DAN, and thus the catalyst with lower acidity may favor 2,6-DAN. The results are consistent with experimental data in literature, and suggest that there is a restricted electronic transition-state selectivity to 2,6-DAN on some molecular-sieve catalysts with lower acidity, since both 2,6- and 2,7-DAN isomers are sterically permitted. In general, 2,6-DAN has a more linear structure with a similar or smaller critical diameter compared to 2,7-DAN, while 2,3-DAN always has a larger diameter than both 2,6- and 2,7-DAN.",
author = "Chunshan Song and Xiaoliang Ma and Schobert, {Harold H.}",
year = "1999",
language = "English (US)",
volume = "738",
pages = "305--321",
journal = "ACS Symposium Series",
issn = "0097-6156",
publisher = "American Chemical Society",

}

Computational analysis for shape-selective alkylation of naphthalene over zeolite catalysts. / Song, Chunshan; Ma, Xiaoliang; Schobert, Harold H.

In: ACS Symposium Series, Vol. 738, 1999, p. 305-321.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Computational analysis for shape-selective alkylation of naphthalene over zeolite catalysts

AU - Song, Chunshan

AU - Ma, Xiaoliang

AU - Schobert, Harold H.

PY - 1999

Y1 - 1999

N2 - This study is a computational analysis for shape-selective alkylation of naphthalene (including isopropylation, ethylation and methylation) by MINDO-PM3 calculations with MOPAC. There are 10 possible dialkylnaphthalene (DAN) isomers, with up to 3 from the so-called β, β-selective dialkylation including 2,6-, 2,7- and 2,3-DAN. However, only 2,6-DAN is the desired product. We calculated the frontier electron density fr(E) and molecular dimensions for alkylnaphthalene (AN) isomers and dialkylnaphthalene (DAN) isomers. The calculation shows that the 6-position in 2-AN has higher fr(E) value than 7-position. The more reactive position for electrophilic substitution has higher fr(E) value which represents the density of electrons in the highest occupied molecular orbital (HOMO). The formation of the cationic intermediate that leads to 2,6-DAN is favored energetically as compared to that for 2,7-DAN or 2,3-DAN. This suggests that during 2-AN alkylation inside a shape-selective channel, the formation of 2,6-DAN is favored electronically more than that of 2,7-DAN or 2,3-DAN, and thus the catalyst with lower acidity may favor 2,6-DAN. The results are consistent with experimental data in literature, and suggest that there is a restricted electronic transition-state selectivity to 2,6-DAN on some molecular-sieve catalysts with lower acidity, since both 2,6- and 2,7-DAN isomers are sterically permitted. In general, 2,6-DAN has a more linear structure with a similar or smaller critical diameter compared to 2,7-DAN, while 2,3-DAN always has a larger diameter than both 2,6- and 2,7-DAN.

AB - This study is a computational analysis for shape-selective alkylation of naphthalene (including isopropylation, ethylation and methylation) by MINDO-PM3 calculations with MOPAC. There are 10 possible dialkylnaphthalene (DAN) isomers, with up to 3 from the so-called β, β-selective dialkylation including 2,6-, 2,7- and 2,3-DAN. However, only 2,6-DAN is the desired product. We calculated the frontier electron density fr(E) and molecular dimensions for alkylnaphthalene (AN) isomers and dialkylnaphthalene (DAN) isomers. The calculation shows that the 6-position in 2-AN has higher fr(E) value than 7-position. The more reactive position for electrophilic substitution has higher fr(E) value which represents the density of electrons in the highest occupied molecular orbital (HOMO). The formation of the cationic intermediate that leads to 2,6-DAN is favored energetically as compared to that for 2,7-DAN or 2,3-DAN. This suggests that during 2-AN alkylation inside a shape-selective channel, the formation of 2,6-DAN is favored electronically more than that of 2,7-DAN or 2,3-DAN, and thus the catalyst with lower acidity may favor 2,6-DAN. The results are consistent with experimental data in literature, and suggest that there is a restricted electronic transition-state selectivity to 2,6-DAN on some molecular-sieve catalysts with lower acidity, since both 2,6- and 2,7-DAN isomers are sterically permitted. In general, 2,6-DAN has a more linear structure with a similar or smaller critical diameter compared to 2,7-DAN, while 2,3-DAN always has a larger diameter than both 2,6- and 2,7-DAN.

UR - http://www.scopus.com/inward/record.url?scp=0040195809&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0040195809&partnerID=8YFLogxK

M3 - Article

VL - 738

SP - 305

EP - 321

JO - ACS Symposium Series

JF - ACS Symposium Series

SN - 0097-6156

ER -