Computational characterization of double porosity metamaterials for broadband sound insulation

Shichao Cui, Ryan L. Harne

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This research investigates the sound insulation properties - sound absorption coefficient and transmission loss - of a double porosity metamaterial and the functional dependence of such properties on the selection of underlying poroelastic material. The internal metamaterial geometry enables a global rotation phenomenon when the system is under a static compression. Using the finite element method, the influence of such compression upon the acoustic properties is quantified for its role in enhancing and tailoring sound insulation characteristics, while the additional influence of embedded rigid inclusions is examined. By applying these concepts to metamaterials composed from different poroelastic media, it is found that the acoustic properties can be tuned over strategic frequency ranges of relevance for sound insulation. In particular, the results demonstrate that for certain metamaterial compositions the absorption coefficient can be increased by about 100% and the transmission loss enhanced by 20% across a broad range of low frequencies by the introduction of the inclusions, while the compression constraint can increase the properties by 10 to 20% across narrow frequency bands. The outcomes suggest new possibilities for greatly enhancing the acoustic insulation properties of poroelastic materials in applications where space is limited and/or where added mass is not a concern

Original languageEnglish (US)
Title of host publication29th Conference on Mechanical Vibration and Noise
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791858226
DOIs
StatePublished - 2017
EventASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2017 - Cleveland, United States
Duration: Aug 6 2017Aug 9 2017

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume8

Other

OtherASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2017
CountryUnited States
CityCleveland
Period8/6/178/9/17

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering
  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Modeling and Simulation

Fingerprint Dive into the research topics of 'Computational characterization of double porosity metamaterials for broadband sound insulation'. Together they form a unique fingerprint.

Cite this