Computational design of a louver particle separator for gas turbine engines

Grant O. Musgrove, Michael D. Barringer, Karen A. Thole, Eric Grover, Joseph Barker

Research output: Chapter in Book/Report/Conference proceedingConference contribution

23 Scopus citations

Abstract

The extreme temperatures in a jet engine require the use of thermal barrier coatings and internal cooling channels to keep the components in the turbine section below their melting temperature. The presence of solid particles in the engine's gas path can erode thermal coatings and clog cooling channels, thereby reducing part life and engine performance. This study uses computational fluid dynamics to design the geometry of a static, inertial particle separator to remove small particles, such as sand, from the engine flow. The concept for the inertial separator includes the usage of a multiple louver array followed by a particle collector. The results of the study show a louver design can separate particles while not incurring large pressure loss.

Original languageEnglish (US)
Title of host publicationProceedings of the ASME Turbo Expo 2009
Subtitle of host publicationPower for Land, Sea and Air
Pages1313-1323
Number of pages11
EditionPART B
DOIs
StatePublished - 2009
Event2009 ASME Turbo Expo - Orlando, FL, United States
Duration: Jun 8 2009Jun 12 2009

Publication series

NameProceedings of the ASME Turbo Expo
NumberPART B
Volume3

Other

Other2009 ASME Turbo Expo
Country/TerritoryUnited States
CityOrlando, FL
Period6/8/096/12/09

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Fingerprint

Dive into the research topics of 'Computational design of a louver particle separator for gas turbine engines'. Together they form a unique fingerprint.

Cite this