Computational fluid dynamics analysis of alternative ventilation schemes in cage-free poultry housing

Long Chen, Eileen E. Fabian-Wheeler, John M. Cimbala, Daniel William Hofstetter, Paul H. Patterson

Research output: Contribution to journalArticlepeer-review

Abstract

This work investigated alternative ventilation schemes to help define a proper ventilation system design in cage-free hen houses with the goal of assuring bird welfare through comfortable conditions. Computational fluid dynamics (CFD) modeling was employed to simulate indoor and outdoor airflows to quantify the effectiveness of ventilation systems in maintaining suitable and uniform living conditions at the hen level. Four three-dimensional CFD models were developed based on a full-scale floor-raised layer house, corresponding to ventilation schemes of the standard top-wall inlet, sidewall exhaust, and three alternatives: mid-wall inlet, ceiling exhaust; mid-wall inlet, ridge exhaust; and mid-wall inlet, attic exhaust with potential for pre-treatment of exhaust air. In a sophisticated and powerful achievement of the analysis, 2365 birds were individually modeled with simplified bird-shapes to represent a realistic number, body heat, and airflow obstruction of hens housed. The simulated ventilation rate for the layer house models was 1.9–2.0 m3 /s (4100 ft3 /min) in the desired range for cold weather (0 C). Simulation results and subsequent analyses demonstrated that these alternative models had the capacity to create satisfactory comfortable temperature and air velocity at the hen level. A full-scale CFD model with individual hen models presented robustness in evaluating bird welfare conditions.

Original languageEnglish (US)
Article number2352
JournalAnimals
Volume11
Issue number8
DOIs
StatePublished - Aug 2021

All Science Journal Classification (ASJC) codes

  • Animal Science and Zoology
  • veterinary(all)

Fingerprint

Dive into the research topics of 'Computational fluid dynamics analysis of alternative ventilation schemes in cage-free poultry housing'. Together they form a unique fingerprint.

Cite this