TY - GEN
T1 - COMSOL simulation of CNT assembly in an epoxy matrix under static magnetic fields for polymer nanocomposite applications
AU - Oyama, Kohei
AU - Yamamoto, Namiko
N1 - Funding Information:
This research is funded by the National Science Foundation (Award No. 1844670) and Penn State University College of Engineering and Department of Aerospace Engineering.
Funding Information:
This research is funded by the National Science Foundation (Award No. College of Engineering and Department of Aerospace Engineering.
Publisher Copyright:
© 2022, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
PY - 2022
Y1 - 2022
N2 - Organization of carbon nanotubes (CNTs) within epoxy matrices can be effectively achieved using magnetic field application. In our previous experimental work, multi-walled CNTs were magnetized, diazotized, and magnetically aligned to form aligned CNT-epoxy composites. While effective toughness improvement was experimentally observed with small CNT addition, more understanding about magnetic assembly of CNTs is desired, to effectively complete CNT assembly before the epoxy cures and also to avoid re-agglomeration of CNTs. In this work, assembly behaviors of ellipsoid particles, that simulate CNT bundles, in a fluid domain, that simulates the epoxy matrix, under the static magnetic field are being studied. Higher ellipsoid aspect ratio was observed to be effective to decrease the magnetic assembly time, while some ellipsoid lower aspect ratio and larger original ellipsoid separate distance combination prevented their magnetic assembly. When assembly is achieved, the assembly time was observed to be much smaller (<0.1 second) than the currently dedicated assembly time in our experiments (~10s of minutes). Further studies with more ellipsoids, varying ellipsoid positions, and increasing magnetic field strength are planned in future.
AB - Organization of carbon nanotubes (CNTs) within epoxy matrices can be effectively achieved using magnetic field application. In our previous experimental work, multi-walled CNTs were magnetized, diazotized, and magnetically aligned to form aligned CNT-epoxy composites. While effective toughness improvement was experimentally observed with small CNT addition, more understanding about magnetic assembly of CNTs is desired, to effectively complete CNT assembly before the epoxy cures and also to avoid re-agglomeration of CNTs. In this work, assembly behaviors of ellipsoid particles, that simulate CNT bundles, in a fluid domain, that simulates the epoxy matrix, under the static magnetic field are being studied. Higher ellipsoid aspect ratio was observed to be effective to decrease the magnetic assembly time, while some ellipsoid lower aspect ratio and larger original ellipsoid separate distance combination prevented their magnetic assembly. When assembly is achieved, the assembly time was observed to be much smaller (<0.1 second) than the currently dedicated assembly time in our experiments (~10s of minutes). Further studies with more ellipsoids, varying ellipsoid positions, and increasing magnetic field strength are planned in future.
UR - http://www.scopus.com/inward/record.url?scp=85122936224&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85122936224&partnerID=8YFLogxK
U2 - 10.2514/6.2022-0499
DO - 10.2514/6.2022-0499
M3 - Conference contribution
AN - SCOPUS:85122936224
SN - 9781624106316
T3 - AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022
BT - AIAA SciTech Forum 2022
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022
Y2 - 3 January 2022 through 7 January 2022
ER -