Concentrate levels and Saccharomyces cerevisiae affect rumen fluid-associated bacteria numbers in dairy heifers

G. J. Lascano, G. I. Zanton, A. J. Heinrichs

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Total viable rumen bacteria counts through the use of colony-unit forming assays lack accuracy because they only include culturable bacteria capable of initiating cell division. Thus, bacterial counts can be underestimated. The use of fluorescent characteristics of cell membranes allows flow cytometry to enumerate and distinguish dead from live bacteria cells. The objective of this experiment was to investigate the viable and total ruminal bacteria counts when 3 levels of forage:concentrate in diets were fed at restricted levels with the addition of Saccharomyces cerevisiae (YC). Three cannulated post-pubertal Holstein heifers (age 18 ± 1.0 months) were fed corn silage (CS)-based diets in a 3-period (35 d) Latin square design. Heifers were fed the diets for 21 d with no yeast addition, followed by 14 d where yeast culture (YC) was added (1 g/kg as-fed basis); (Yea-Sacc1026, Alltech, Inc., Nicholasville, KY). A low concentrate (LC) TMR (80% CS, 20% concentrate; 12.4% CP, 35% NDF), a medium concentrate (MC) TMR (60% CS, 40% concentrate; 12.3% CP. 28% NDF), and a high concentrate (HC) TMR (40% CS, 60% concentrate; 12.6% CP, 25% NDF), were fed once per day. Rumen fluid was sampled - 2, 0, 2, 4, 6, 8, 10, 12 h after feeding. Samples were immediately stained with fluorescent dyes using the BacLight kit (Molecular Probes Inc., Eugene, OR) and analyzed with a Coulter XL-MCL single laser flow cytometer. Mean rumen viable bacteria counts linearly increased among treatments (4.96, 4.78, 6.73 × 1011 ± 0.53 × 1011 cells/ml; P = 0.02) for LC, MC and HC respectively, and YC addition increased number of viable bacteria cells (P < 0.01). Total and viable bacteria counts decreased for the first 2 h after feeding then increased 4 h post-feeding. Dietary concentrate level and YC can alter rumen bacteria counts as measured by this method.

Original languageEnglish (US)
Pages (from-to)189-194
Number of pages6
JournalLivestock Science
Volume126
Issue number1-3
DOIs
StatePublished - Jan 2009

All Science Journal Classification (ASJC) codes

  • Animal Science and Zoology
  • veterinary(all)

Fingerprint Dive into the research topics of 'Concentrate levels and Saccharomyces cerevisiae affect rumen fluid-associated bacteria numbers in dairy heifers'. Together they form a unique fingerprint.

Cite this