TY - GEN
T1 - Conceptual design of a two stage runway based space launch system
AU - Renganathan, Sudharshan Ashwin
AU - Mavrisy, Dimitri N.
N1 - Publisher Copyright:
© 2015, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
PY - 2015
Y1 - 2015
N2 - The conceptual design of a runway-based, fully re-usable space launch system to deliver payload to 100 nautical mile Low Earth Orbit (LEO), driven by the requirements of Space Solar Power (SSP), is performed. A two-stage-to-orbit (TSTO) system is considered which includes a large supersonic carrier vehicle capable of take-off and landing on conventional runways and a hypersonic vehicle air-launched from the carrier vehicle, capable of accelerating to orbital speeds and return to earth safely, thereby making the system re-usable and hence cost effective. The energy based constraint analysis by Mattingly1 is used to size the carrier vehicle while local surface inclination methods2 are used to size the hypersonic vehicle. An unified environment that can rapidly size the TSTO system is developed. This paper presents the preliminary results of the environment which is undergoing ongoing development. Focus is laid more on the analytical representation of the hypersonic vehicle shape and its drag estimation which is critical in the conceptual design of the vehicle. The propulsion system feasibility for the launch system is also discussed.
AB - The conceptual design of a runway-based, fully re-usable space launch system to deliver payload to 100 nautical mile Low Earth Orbit (LEO), driven by the requirements of Space Solar Power (SSP), is performed. A two-stage-to-orbit (TSTO) system is considered which includes a large supersonic carrier vehicle capable of take-off and landing on conventional runways and a hypersonic vehicle air-launched from the carrier vehicle, capable of accelerating to orbital speeds and return to earth safely, thereby making the system re-usable and hence cost effective. The energy based constraint analysis by Mattingly1 is used to size the carrier vehicle while local surface inclination methods2 are used to size the hypersonic vehicle. An unified environment that can rapidly size the TSTO system is developed. This paper presents the preliminary results of the environment which is undergoing ongoing development. Focus is laid more on the analytical representation of the hypersonic vehicle shape and its drag estimation which is critical in the conceptual design of the vehicle. The propulsion system feasibility for the launch system is also discussed.
UR - http://www.scopus.com/inward/record.url?scp=85088354315&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85088354315&partnerID=8YFLogxK
U2 - 10.2514/6.2015-3980
DO - 10.2514/6.2015-3980
M3 - Conference contribution
AN - SCOPUS:85088354315
SN - 9781624103216
T3 - 51st AIAA/SAE/ASEE Joint Propulsion Conference
BT - 51st AIAA/SAE/ASEE Joint Propulsion Conference
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - 51st AIAA/SAE/ASEE Joint Propulsion Conference, 2015
Y2 - 27 July 2015 through 29 July 2015
ER -