Conduction through plasma-treated polyimide: analysis of high-field conduction by hopping and Schottky theory

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Plasma surface modification of polyimide (PI) films has been used to modify the material’s wetting and adhesion properties but has also been found to impact high-field electrical properties. Previous work by Meddeb et al. (Chem Phys Lett 649:111–114, 2016. https://doi.org/10.1016/j.cplett.2016.02.037) demonstrates a significant reduction in high-field leakage current at high temperatures because of O 2 plasma treatment of PI. In this study, we investigate field-dependent current density [J(E)] data measured in our previous study by Meddeb et al. (2016) to identify the surface and bulk mechanisms responsible for high-field conduction behavior of O 2 plasma-modified PI films. Specifically, we analyze the J(E) data using three conduction theories: Poole–Frenkel, Schottky, and Hopping. Poole–Frenkel and Schottky analyses are performed by the implementation of linear regression. Hopping analysis was performed using a rigorous statistical technique that incorporates nonlinear regression as well as a bootstrap statistical analysis of fit parameters. Analysis of J(E) data over the temperature range 25–175 °C indicates that 13-micron-thick untreated PI films are dominated by a hopping process at lower temperatures; however, transition to Schottky-dominated conduction occurs as temperature is increased. Films treated with O 2 plasma show similar characteristics to the untreated set: Hopping dominated conduction at low temperatures with gradual transition to Schottky. However, the transition to Schottky conduction occurs at a higher temperature in plasma-treated films in comparison with the untreated control set. These results are verified by (1) extracting dielectric permittivity from Schottky plots as a function of temperature and (2) a statistical interpretation of confidence intervals calculated for hopping fit parameters used in low-temperature nonlinear regression. Outcomes from theoretical analysis of the data are used to provide further insight into how surface chemistry may be tailored to limit high-field leakage current in polyimides and insulating polymers in general.

Original languageEnglish (US)
Pages (from-to)10548-10559
Number of pages12
JournalJournal of Materials Science
Volume54
Issue number14
DOIs
StatePublished - Jul 30 2019

Fingerprint

Polyimides
Plasmas
Temperature
Leakage currents
Surface chemistry
Linear regression
Wetting
Surface treatment
Statistical methods
Polymers
Electric properties
Permittivity
Current density
Adhesion

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering

Cite this

@article{8603dff755c2459a977845ea592ebc97,
title = "Conduction through plasma-treated polyimide: analysis of high-field conduction by hopping and Schottky theory",
abstract = "Plasma surface modification of polyimide (PI) films has been used to modify the material’s wetting and adhesion properties but has also been found to impact high-field electrical properties. Previous work by Meddeb et al. (Chem Phys Lett 649:111–114, 2016. https://doi.org/10.1016/j.cplett.2016.02.037) demonstrates a significant reduction in high-field leakage current at high temperatures because of O 2 plasma treatment of PI. In this study, we investigate field-dependent current density [J(E)] data measured in our previous study by Meddeb et al. (2016) to identify the surface and bulk mechanisms responsible for high-field conduction behavior of O 2 plasma-modified PI films. Specifically, we analyze the J(E) data using three conduction theories: Poole–Frenkel, Schottky, and Hopping. Poole–Frenkel and Schottky analyses are performed by the implementation of linear regression. Hopping analysis was performed using a rigorous statistical technique that incorporates nonlinear regression as well as a bootstrap statistical analysis of fit parameters. Analysis of J(E) data over the temperature range 25–175 °C indicates that 13-micron-thick untreated PI films are dominated by a hopping process at lower temperatures; however, transition to Schottky-dominated conduction occurs as temperature is increased. Films treated with O 2 plasma show similar characteristics to the untreated set: Hopping dominated conduction at low temperatures with gradual transition to Schottky. However, the transition to Schottky conduction occurs at a higher temperature in plasma-treated films in comparison with the untreated control set. These results are verified by (1) extracting dielectric permittivity from Schottky plots as a function of temperature and (2) a statistical interpretation of confidence intervals calculated for hopping fit parameters used in low-temperature nonlinear regression. Outcomes from theoretical analysis of the data are used to provide further insight into how surface chemistry may be tailored to limit high-field leakage current in polyimides and insulating polymers in general.",
author = "Vecchio, {Michael A.} and {Barhoumi Ep Meddeb}, Amira and Zoubeida Ounaies and Lanagan, {Michael T.}",
year = "2019",
month = "7",
day = "30",
doi = "10.1007/s10853-019-03574-w",
language = "English (US)",
volume = "54",
pages = "10548--10559",
journal = "Journal of Materials Science",
issn = "0022-2461",
publisher = "Springer Netherlands",
number = "14",

}

TY - JOUR

T1 - Conduction through plasma-treated polyimide

T2 - analysis of high-field conduction by hopping and Schottky theory

AU - Vecchio, Michael A.

AU - Barhoumi Ep Meddeb, Amira

AU - Ounaies, Zoubeida

AU - Lanagan, Michael T.

PY - 2019/7/30

Y1 - 2019/7/30

N2 - Plasma surface modification of polyimide (PI) films has been used to modify the material’s wetting and adhesion properties but has also been found to impact high-field electrical properties. Previous work by Meddeb et al. (Chem Phys Lett 649:111–114, 2016. https://doi.org/10.1016/j.cplett.2016.02.037) demonstrates a significant reduction in high-field leakage current at high temperatures because of O 2 plasma treatment of PI. In this study, we investigate field-dependent current density [J(E)] data measured in our previous study by Meddeb et al. (2016) to identify the surface and bulk mechanisms responsible for high-field conduction behavior of O 2 plasma-modified PI films. Specifically, we analyze the J(E) data using three conduction theories: Poole–Frenkel, Schottky, and Hopping. Poole–Frenkel and Schottky analyses are performed by the implementation of linear regression. Hopping analysis was performed using a rigorous statistical technique that incorporates nonlinear regression as well as a bootstrap statistical analysis of fit parameters. Analysis of J(E) data over the temperature range 25–175 °C indicates that 13-micron-thick untreated PI films are dominated by a hopping process at lower temperatures; however, transition to Schottky-dominated conduction occurs as temperature is increased. Films treated with O 2 plasma show similar characteristics to the untreated set: Hopping dominated conduction at low temperatures with gradual transition to Schottky. However, the transition to Schottky conduction occurs at a higher temperature in plasma-treated films in comparison with the untreated control set. These results are verified by (1) extracting dielectric permittivity from Schottky plots as a function of temperature and (2) a statistical interpretation of confidence intervals calculated for hopping fit parameters used in low-temperature nonlinear regression. Outcomes from theoretical analysis of the data are used to provide further insight into how surface chemistry may be tailored to limit high-field leakage current in polyimides and insulating polymers in general.

AB - Plasma surface modification of polyimide (PI) films has been used to modify the material’s wetting and adhesion properties but has also been found to impact high-field electrical properties. Previous work by Meddeb et al. (Chem Phys Lett 649:111–114, 2016. https://doi.org/10.1016/j.cplett.2016.02.037) demonstrates a significant reduction in high-field leakage current at high temperatures because of O 2 plasma treatment of PI. In this study, we investigate field-dependent current density [J(E)] data measured in our previous study by Meddeb et al. (2016) to identify the surface and bulk mechanisms responsible for high-field conduction behavior of O 2 plasma-modified PI films. Specifically, we analyze the J(E) data using three conduction theories: Poole–Frenkel, Schottky, and Hopping. Poole–Frenkel and Schottky analyses are performed by the implementation of linear regression. Hopping analysis was performed using a rigorous statistical technique that incorporates nonlinear regression as well as a bootstrap statistical analysis of fit parameters. Analysis of J(E) data over the temperature range 25–175 °C indicates that 13-micron-thick untreated PI films are dominated by a hopping process at lower temperatures; however, transition to Schottky-dominated conduction occurs as temperature is increased. Films treated with O 2 plasma show similar characteristics to the untreated set: Hopping dominated conduction at low temperatures with gradual transition to Schottky. However, the transition to Schottky conduction occurs at a higher temperature in plasma-treated films in comparison with the untreated control set. These results are verified by (1) extracting dielectric permittivity from Schottky plots as a function of temperature and (2) a statistical interpretation of confidence intervals calculated for hopping fit parameters used in low-temperature nonlinear regression. Outcomes from theoretical analysis of the data are used to provide further insight into how surface chemistry may be tailored to limit high-field leakage current in polyimides and insulating polymers in general.

UR - http://www.scopus.com/inward/record.url?scp=85064337312&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85064337312&partnerID=8YFLogxK

U2 - 10.1007/s10853-019-03574-w

DO - 10.1007/s10853-019-03574-w

M3 - Article

AN - SCOPUS:85064337312

VL - 54

SP - 10548

EP - 10559

JO - Journal of Materials Science

JF - Journal of Materials Science

SN - 0022-2461

IS - 14

ER -