Conformational changes in serpins: I. The native and cleaved conformations of α1-antitrypsin

James C. Whisstock, Richard Skinner, Robin W. Carrell, Arthur M. Lesk

Research output: Contribution to journalArticle

57 Scopus citations

Abstract

The serpins (SERine Proteinase INhibitors) are a family of proteins with important physiological roles, including but not limited to the inhibition of chymotrypsin-like serine proteinases. The inhibitory mechanism involves a large conformational change known as the S → R (stressed → relaxed) transition. The largest structural differences occur in a region around the scissile bond called the reactive centre loop: In the native (S) state, the reactive centre is exposed, and is free to interact with proteinases. In inhibitory serpins, in the cleaved (R) state the reactive centre loop forms an additional strand within the β-sheet. The latent state is an uncleaved state in which the intact reactive centre loop is integrated into the A sheet as in the cleaved form, to give an alternative R state. The serpin structures illustrate detailed control of conformation within a single protein. Serpins are also an unusual family of proteins in which homologues have native states with different folding topologies. Determination of the structures of inhibitory serpins in multiple conformational states permits a detailed analysis of the mechanism of the S → R transition, and of the way in which a single sequence can form two stabilised states of different topology. Here we compare the conformations of α1-antitrypsin in native and cleaved states. Many protein conformational changes involve relative motions of large rigid subunits. We determine the rigid subunits of α1-antitrypsin and analyse the changes in their relative position and orientation. Knowing that the conformational change is initiated by cleavage at the reactive centre, we describe a mechanism of the S → R transition as a logical sequence of mechanical effects, even though the transition likely proceeds in a concerted manner. (C) 2000 Academic Press.

Original languageEnglish (US)
Pages (from-to)685-699
Number of pages15
JournalJournal of Molecular Biology
Volume296
Issue number2
DOIs
StatePublished - Feb 18 2000

All Science Journal Classification (ASJC) codes

  • Structural Biology
  • Molecular Biology

Fingerprint Dive into the research topics of 'Conformational changes in serpins: I. The native and cleaved conformations of α<sub>1</sub>-antitrypsin'. Together they form a unique fingerprint.

  • Cite this