Conservation and modification of genetic and physiological toolkits underpinning diapause in bumble bee queens

Etya Amsalem, David A. Galbraith, Jonathan Cnaani, Peter E.A. Teal, Christina M. Grozinger

Research output: Contribution to journalArticle

27 Scopus citations

Abstract

Diapause is the key adaptation allowing insects to survive unfavourable conditions and inhabit an array of environments. Physiological changes during diapause are largely conserved across species and are hypothesized to be regulated by a conserved suite of genes (a 'toolkit'). Furthermore, it is hypothesized that in social insects, this toolkit was co-opted to mediate caste differentiation between long-lived, reproductive, diapause-capable queens and short-lived, sterile workers. Using Bombus terrestris queens, we examined the physiological and transcriptomic changes associated with diapause and CO2 treatment, which causes queens to bypass diapause. We performed comparative analyses with genes previously identified to be associated with diapause in the Dipteran Sarcophaga crassipalpis and with caste differentiation in bumble bees. As in Diptera, diapause in bumble bees is associated with physiological and transcriptional changes related to nutrient storage, stress resistance and core metabolic pathways. There is a significant overlap, both at the level of transcript and gene ontology, between the genetic mechanisms mediating diapause in B. Terrestris and S. crassipalpis, reaffirming the existence of a conserved insect diapause genetic toolkit. However, a substantial proportion (10%) of the differentially regulated transcripts in diapausing queens have no clear orthologs in other species, and key players regulating diapause in Diptera (juvenile hormone and vitellogenin) appear to have distinct functions in bumble bees. We also found a substantial overlap between genes related to caste determination and diapause in bumble bees. Thus, our studies demonstrate an intriguing interplay between pathways underpinning adaptation to environmental extremes and the evolution of sociality in insects.

Original languageEnglish (US)
Pages (from-to)5596-5615
Number of pages20
JournalMolecular ecology
Volume24
Issue number22
DOIs
StatePublished - Nov 1 2015

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Genetics

Cite this