Constraints on compaction rate and equilibrium in the pressure solution creep of quartz aggregates and fractures: Controls of aqueous concentration

Joshua Taron, Derek Elsworth

Research output: Contribution to journalArticle

28 Citations (Scopus)

Abstract

A relationship is developed to examine dissolution precipitation creep in crustal rocks with implicit coupling of the dissolution-diffusion-precipitation system and without requiring the iterative solution of a linear equation system. Implicit control is maintained over aqueous silica concentrations within hydrated solid contacts and in open pore space. For arbitrary conditions of temperature, pressure, and mechanical stress, the simple equation system conforms to a polynomial solution for aqueous concentrations set within a small iterative compaction scheme. Equilibrium (long-term) pressure solution compaction, previously ill constrained, is explored with two alternate methods: (1) a modified form of critical stress and (2) rate-controlled growth of diffusion limiting cement at the periphery of solid contacts. Predictions are compared to previous experimental results that allow compaction equilibrium to be achieved. Only the modified critical stress is capable of reproducing these results. In this case the agreement is strong across a range of conditions (400°C-500°C, 20-150 MPa, and 3-120 μm mean particle diameter). Compaction rates are overestimated in very early times in a manner suggesting the importance of plastic flow during this period. Predictions are also compared to concentration independent simplifications at general conditions of 350°C and 50 MPa. Compared to the implicit coupling, these methods represent the mean behavior, slightly underestimating rates in dissolution control and slightly overestimating in diffusion control. Aqueous concentration is influential in either regime. The solution is applicable to open and closed systems, is extended to systems with boundary influx, and may be applied to granular media or fractures, differing only in the method defining evolving contact geometry.

Original languageEnglish (US)
Article numberB07211
JournalJournal of Geophysical Research: Solid Earth
Volume115
Issue number7
DOIs
StatePublished - Jul 1 2010

Fingerprint

Quartz
pressure solution
creep
compaction
Creep
Compaction
quartz
dissolving
Dissolution
critical loading
dissolution
granular medium
plastic flow
iterative solution
linear equations
cements
pore space
prediction
predictions
Linear equations

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Geochemistry and Petrology
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science

Cite this

@article{91d420ae88ed411fb0f6eda6dfb9ba68,
title = "Constraints on compaction rate and equilibrium in the pressure solution creep of quartz aggregates and fractures: Controls of aqueous concentration",
abstract = "A relationship is developed to examine dissolution precipitation creep in crustal rocks with implicit coupling of the dissolution-diffusion-precipitation system and without requiring the iterative solution of a linear equation system. Implicit control is maintained over aqueous silica concentrations within hydrated solid contacts and in open pore space. For arbitrary conditions of temperature, pressure, and mechanical stress, the simple equation system conforms to a polynomial solution for aqueous concentrations set within a small iterative compaction scheme. Equilibrium (long-term) pressure solution compaction, previously ill constrained, is explored with two alternate methods: (1) a modified form of critical stress and (2) rate-controlled growth of diffusion limiting cement at the periphery of solid contacts. Predictions are compared to previous experimental results that allow compaction equilibrium to be achieved. Only the modified critical stress is capable of reproducing these results. In this case the agreement is strong across a range of conditions (400°C-500°C, 20-150 MPa, and 3-120 μm mean particle diameter). Compaction rates are overestimated in very early times in a manner suggesting the importance of plastic flow during this period. Predictions are also compared to concentration independent simplifications at general conditions of 350°C and 50 MPa. Compared to the implicit coupling, these methods represent the mean behavior, slightly underestimating rates in dissolution control and slightly overestimating in diffusion control. Aqueous concentration is influential in either regime. The solution is applicable to open and closed systems, is extended to systems with boundary influx, and may be applied to granular media or fractures, differing only in the method defining evolving contact geometry.",
author = "Joshua Taron and Derek Elsworth",
year = "2010",
month = "7",
day = "1",
doi = "10.1029/2009JB007118",
language = "English (US)",
volume = "115",
journal = "Journal of Geophysical Research",
issn = "0148-0227",
publisher = "American Geophysical Union",
number = "7",

}

TY - JOUR

T1 - Constraints on compaction rate and equilibrium in the pressure solution creep of quartz aggregates and fractures

T2 - Controls of aqueous concentration

AU - Taron, Joshua

AU - Elsworth, Derek

PY - 2010/7/1

Y1 - 2010/7/1

N2 - A relationship is developed to examine dissolution precipitation creep in crustal rocks with implicit coupling of the dissolution-diffusion-precipitation system and without requiring the iterative solution of a linear equation system. Implicit control is maintained over aqueous silica concentrations within hydrated solid contacts and in open pore space. For arbitrary conditions of temperature, pressure, and mechanical stress, the simple equation system conforms to a polynomial solution for aqueous concentrations set within a small iterative compaction scheme. Equilibrium (long-term) pressure solution compaction, previously ill constrained, is explored with two alternate methods: (1) a modified form of critical stress and (2) rate-controlled growth of diffusion limiting cement at the periphery of solid contacts. Predictions are compared to previous experimental results that allow compaction equilibrium to be achieved. Only the modified critical stress is capable of reproducing these results. In this case the agreement is strong across a range of conditions (400°C-500°C, 20-150 MPa, and 3-120 μm mean particle diameter). Compaction rates are overestimated in very early times in a manner suggesting the importance of plastic flow during this period. Predictions are also compared to concentration independent simplifications at general conditions of 350°C and 50 MPa. Compared to the implicit coupling, these methods represent the mean behavior, slightly underestimating rates in dissolution control and slightly overestimating in diffusion control. Aqueous concentration is influential in either regime. The solution is applicable to open and closed systems, is extended to systems with boundary influx, and may be applied to granular media or fractures, differing only in the method defining evolving contact geometry.

AB - A relationship is developed to examine dissolution precipitation creep in crustal rocks with implicit coupling of the dissolution-diffusion-precipitation system and without requiring the iterative solution of a linear equation system. Implicit control is maintained over aqueous silica concentrations within hydrated solid contacts and in open pore space. For arbitrary conditions of temperature, pressure, and mechanical stress, the simple equation system conforms to a polynomial solution for aqueous concentrations set within a small iterative compaction scheme. Equilibrium (long-term) pressure solution compaction, previously ill constrained, is explored with two alternate methods: (1) a modified form of critical stress and (2) rate-controlled growth of diffusion limiting cement at the periphery of solid contacts. Predictions are compared to previous experimental results that allow compaction equilibrium to be achieved. Only the modified critical stress is capable of reproducing these results. In this case the agreement is strong across a range of conditions (400°C-500°C, 20-150 MPa, and 3-120 μm mean particle diameter). Compaction rates are overestimated in very early times in a manner suggesting the importance of plastic flow during this period. Predictions are also compared to concentration independent simplifications at general conditions of 350°C and 50 MPa. Compared to the implicit coupling, these methods represent the mean behavior, slightly underestimating rates in dissolution control and slightly overestimating in diffusion control. Aqueous concentration is influential in either regime. The solution is applicable to open and closed systems, is extended to systems with boundary influx, and may be applied to granular media or fractures, differing only in the method defining evolving contact geometry.

UR - http://www.scopus.com/inward/record.url?scp=77955356518&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77955356518&partnerID=8YFLogxK

U2 - 10.1029/2009JB007118

DO - 10.1029/2009JB007118

M3 - Article

AN - SCOPUS:77955356518

VL - 115

JO - Journal of Geophysical Research

JF - Journal of Geophysical Research

SN - 0148-0227

IS - 7

M1 - B07211

ER -